getindata-kedro-starters


Namegetindata-kedro-starters JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/getindata/kedro-starters
SummaryStarters for kedro projects to simplify pipelines deployment using GetInData plugins
upload_time2022-12-19 15:31:46
maintainer
docs_urlNone
authorMichał Bryś
requires_python>=3.8,<3.11
licenseApache-2.0
keywords kedro kedro starters mlops
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Kedro starters by GetInData

In [GetInData](https://getindata.com/) we deploy Kedro-based projects to different environments 
(on-premise and cloud). This repository hosts the starters with a few deployment recipes, including
the ones that use [our plugins](https://github.com/search?q=topic%3Akedro-plugin+org%3Agetindata+fork%3Atrue&type=repositories).

## Available starters

* [pyspark-iris-running-on-gke](getindata_kedro_starters/pyspark-iris-running-on-gke/README.md) uses Google Kubernetes Engine to run Spark-powered kedro pipeline in a distributed manner.
* [pyspark-iris-running-on-gcp-dataproc-serverless](getindata_kedro_starters/pyspark-iris-running-on-gcp-dataproc-serverless/README.md) uses Google Cloud Dataproc Batches to run Spark-powered kedro pipeline in a distributed manner on Severless Spark.

## Starters development

1. Clone the repository and switch to `develop`
1. Run `poetry install`
1. Run `source $(poetry env info --path)/bin/activate`
Note: when you use `conda`, you need the extra step of `conda deactivate` to avoid conflict between the `conda` and `venv`
3. Install kedro `pip install kedro==0.18.3`
4. Run `kedro new -s <name-of-the-starter>`


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/getindata/kedro-starters",
    "name": "getindata-kedro-starters",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<3.11",
    "maintainer_email": "",
    "keywords": "kedro,kedro starters,mlops",
    "author": "Micha\u0142 Bry\u015b",
    "author_email": "michal.brys@getindata.com",
    "download_url": "https://files.pythonhosted.org/packages/3a/ce/d8e6c1604cbe15d5ffe8b736f6d4b5e05d6e84e484d699f4f1826a7cdd79/getindata_kedro_starters-0.2.0.tar.gz",
    "platform": null,
    "description": "# Kedro starters by GetInData\n\nIn [GetInData](https://getindata.com/) we deploy Kedro-based projects to different environments \n(on-premise and cloud). This repository hosts the starters with a few deployment recipes, including\nthe ones that use [our plugins](https://github.com/search?q=topic%3Akedro-plugin+org%3Agetindata+fork%3Atrue&type=repositories).\n\n## Available starters\n\n* [pyspark-iris-running-on-gke](getindata_kedro_starters/pyspark-iris-running-on-gke/README.md) uses Google Kubernetes Engine to run Spark-powered kedro pipeline in a distributed manner.\n* [pyspark-iris-running-on-gcp-dataproc-serverless](getindata_kedro_starters/pyspark-iris-running-on-gcp-dataproc-serverless/README.md) uses Google Cloud Dataproc Batches to run Spark-powered kedro pipeline in a distributed manner on Severless Spark.\n\n## Starters development\n\n1. Clone the repository and switch to `develop`\n1. Run `poetry install`\n1. Run `source $(poetry env info --path)/bin/activate`\nNote: when you use `conda`, you need the extra step of `conda deactivate` to avoid conflict between the `conda` and `venv`\n3. Install kedro `pip install kedro==0.18.3`\n4. Run `kedro new -s <name-of-the-starter>`\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Starters for kedro projects to simplify pipelines deployment using GetInData plugins",
    "version": "0.2.0",
    "split_keywords": [
        "kedro",
        "kedro starters",
        "mlops"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "444abff7ed0d1f3d947fbcc2dc33af4c",
                "sha256": "7e7fb1293aa0ea6a98e1173e8594280fd13937f042d268a588d55576a4b9d833"
            },
            "downloads": -1,
            "filename": "getindata_kedro_starters-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "444abff7ed0d1f3d947fbcc2dc33af4c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.11",
            "size": 196319,
            "upload_time": "2022-12-19T15:31:44",
            "upload_time_iso_8601": "2022-12-19T15:31:44.203500Z",
            "url": "https://files.pythonhosted.org/packages/28/78/e1665a9b2a1c320bfffb5a4f661a701c3b29bccbcf6edf32f9f67e5d35dc/getindata_kedro_starters-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "9c8f0bfa0671e76a3889ec02c08415d4",
                "sha256": "239ecdbc11fdac33037c49ba725e5d23711ecfdbbc1dc16a7829e2e0494ef439"
            },
            "downloads": -1,
            "filename": "getindata_kedro_starters-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9c8f0bfa0671e76a3889ec02c08415d4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.11",
            "size": 161027,
            "upload_time": "2022-12-19T15:31:46",
            "upload_time_iso_8601": "2022-12-19T15:31:46.124022Z",
            "url": "https://files.pythonhosted.org/packages/3a/ce/d8e6c1604cbe15d5ffe8b736f6d4b5e05d6e84e484d699f4f1826a7cdd79/getindata_kedro_starters-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-19 15:31:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "getindata",
    "github_project": "kedro-starters",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "getindata-kedro-starters"
}
        
Elapsed time: 0.02413s