gitllama


Namegitllama JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryAI-powered git automation tool - clone, branch, change, commit, push with intelligence
upload_time2025-08-18 00:48:29
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseGPL-3.0-or-later
keywords ai automation devops git llm ollama workflow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GitLlama 🦙🤖

AI-powered git automation tool with deep project understanding. GitLlama v0.5.0 uses hierarchical AI analysis and intelligent single-word decision-making to clone, analyze, optimize, commit, and push your code.

## 🌟 Key Features

- **🧠 Deep Project Analysis**: Hierarchical summarization system that understands entire codebases
- **🎯 Single-Word Decision System**: AI makes deterministic decisions with fuzzy matching for reliability
- **🌿 Intelligent Branch Selection**: AI analyzes existing branches and decides whether to reuse or create new ones
- **📝 TODO.md Integration**: Detects and follows project owner guidance from TODO.md files
- **📊 Smart File Operations**: AI selects up to 5 files to create, modify, or delete intelligently
- **🔄 Guided Questions**: AI asks strategic questions throughout analysis for better understanding
- **📈 Synthesis & Recommendations**: Provides actionable next steps and development priorities
- **📝 Detailed Decision Tracking**: See every AI decision with confidence scores and reasoning

## 🚀 Installation

```bash
pip install gitllama
```

## 📋 Prerequisites

GitLlama requires Ollama for AI-powered features:

```bash
# Install Ollama (if not already installed)
curl -fsSL https://ollama.com/install.sh | sh

# Start Ollama server
ollama serve

# Pull a recommended model
ollama pull gemma3:4b
```

## 💻 Usage

### Basic usage (recommended):

```bash
gitllama https://github.com/user/repo.git
```

### With custom model:

```bash
gitllama https://github.com/user/repo.git --model llama3:8b
```

### With specific branch (AI handles all other decisions):

```bash
gitllama https://github.com/user/repo.git --branch feature/my-improvement
```

### Verbose mode (see all AI decisions):

```bash
gitllama https://github.com/user/repo.git --verbose
```

## 🔬 How It Works

GitLlama uses a sophisticated multi-step process to understand and improve repositories:

### 1. **Deep Repository Analysis** 🔍
   - **Step 1: Data Gathering** - Scans all text files, configs, and documentation
   - **Step 2: Smart Chunking** - Groups files to maximize AI context window usage
   - **Step 3: Parallel Analysis** - Each chunk analyzed independently for scalability
   - **Step 4: Hierarchical Merging** - Combines summaries using merge-sort approach
   - **Step 5: Result Formatting** - Creates structured insights about the project

### 2. **Intelligent Workflow** 🤖
   1. **Clones the repository**
   2. **AI explores the project** - Deep multi-level analysis across all branches
   3. **AI analyzes existing branches** - Evaluates reuse potential and compatibility
   4. **AI decides on branch strategy** - Smart selection between reusing existing or creating new
   5. **AI makes intelligent changes** - Based on comprehensive project understanding
   6. **AI generates commit message** - Follows conventional commit format
   7. **Pushes to remote**

### Example Analysis Output:
```
Starting hierarchical repository analysis
============================================================
STEP 1: DATA GATHERING
  Found 45 files with 12500 total tokens
STEP 2: CHUNKING
  Created 5 chunks for analysis
    Chunk 1: 12 files, 2500 tokens
    Chunk 2: 10 files, 2800 tokens
    Chunk 3: 8 files, 2200 tokens
    Chunk 4: 9 files, 2600 tokens
    Chunk 5: 6 files, 2400 tokens
STEP 3: CHUNK ANALYSIS
  Analyzing 5 chunks
    Processing chunk 1/5...
    Processing chunk 2/5...
    ...
STEP 4: HIERARCHICAL MERGING
  Starting hierarchical merge of 5 summaries
    Level 1: Merging 5 summaries (1800 tokens)
STEP 5: FORMAT RESULTS
  Formatting final results
============================================================
Repository analysis complete!
```

### 3. **Intelligent Branch Selection** 🌿

GitLlama now features sophisticated branch analysis and selection:

```
Starting intelligent branch selection process
============================================================
STEP 1: ANALYZE EXISTING BRANCHES
  Analyzing purposes of 3 branches
    Branch 'feature/auth-system': Production-ready authentication system
    Branch 'wip-database': Work-in-progress database optimization
    Branch 'docs/api': API documentation updates
STEP 2: EVALUATE REUSE POTENTIAL
  Evaluating reuse potential for existing branches
    wip-database: score=45, reasons=work-in-progress branch, matching project type
    feature/auth-system: score=35, reasons=feature branch, matching technologies
STEP 3: MAKE BRANCH DECISION
  Making branch selection decision
🤖 AI: Deciding branch selection strategy with 2 candidates
    Decision: REUSE - High compatibility with existing WIP branch
STEP 4: GENERATE/SELECT BRANCH NAME
  Finalizing branch selection
    Selected existing branch: wip-database
============================================================
Branch selection complete: wip-database
```

#### Branch Selection Features:
- **🔍 Multi-branch Analysis**: Examines all branches in the repository
- **🎯 Smart Scoring**: Evaluates compatibility based on project type, technologies, and purpose
- **🔄 Reuse Preference**: Strongly favors reusing existing branches (80% bias)
- **🏗️ Branch Classification**: Identifies feature, fix, docs, and WIP branches
- **⚙️ Intelligent Fallback**: Creates new branches with meaningful names when needed

## 🐍 Python API

```python
from gitllama import GitAutomator, AICoordinator

# With AI - Full intelligent automation
ai = AICoordinator(model="gemma3:4b")
with GitAutomator(ai_coordinator=ai) as automator:
    results = automator.run_full_workflow(
        git_url="https://github.com/user/repo.git"
    )
    
    print(f"Success: {results['success']}")
    print(f"Branch created: {results['branch']}")
    print(f"Files modified: {results['modified_files']}")
    
    # Access detailed AI analysis
    if 'ai_analysis' in results:
        analysis = results['ai_analysis']
        print(f"Project Type: {analysis['project_type']}")
        print(f"Technologies: {', '.join(analysis['technologies'])}")
        print(f"Code Quality: {analysis['quality']}")
        print(f"Architecture: {analysis['architecture']}")

# Without AI - Simple automation
with GitAutomator() as automator:
    results = automator.run_full_workflow(
        git_url="https://github.com/user/repo.git",
        branch_name="my-branch",
        commit_message="My changes"
    )
```

## 🏗️ Architecture

GitLlama is built with a modular architecture for easy extension:

```
gitllama/
├── cli.py              # Command-line interface
├── git_operations.py   # Git automation logic
├── ai_coordinator.py   # AI workflow coordination
├── project_analyzer.py # Hierarchical project analysis
├── branch_analyzer.py  # Intelligent branch selection (NEW!)
├── config.py           # Configuration and logging setup
└── ollama_client.py    # Ollama API integration
```

### Key Components:

- **ProjectAnalyzer**: Handles the 5-step hierarchical analysis process
- **BranchAnalyzer**: Intelligent branch selection with 4-step decision pipeline (NEW!)
- **AICoordinator**: Orchestrates AI decisions throughout the workflow
- **GitAutomator**: Manages git operations with optional AI integration
- **OllamaClient**: Interfaces with local Ollama models

## 🤖 AI Models

The tool works with any Ollama model. Recommended models:

- `gemma3:4b` - Fast and efficient (default)
- `llama3.2:1b` - Ultra-fast for simple tasks
- `codellama:7b` - Optimized for code understanding
- `mistral:7b` - Good general purpose
- `gemma2:2b` - Very fast, good for simple tasks

### Context Window Sizes:
- Small models (1-3B): ~2-4K tokens
- Medium models (7B): ~4-8K tokens
- Large models (13B+): ~8-16K tokens

## 🎯 What Gets Analyzed

GitLlama intelligently analyzes:
- Source code files (Python, JavaScript, Java, Go, Rust, etc.)
- Configuration files (JSON, YAML, TOML, etc.)
- Documentation (Markdown, README, LICENSE)
- Build files (Dockerfile, Makefile, package.json)
- Scripts (Shell, Batch, PowerShell)
- Web assets (HTML, CSS, XML)

## 📊 Analysis Results

The AI provides multi-level insights:

```json
{
  "project_type": "web-application",
  "technologies": ["Python", "FastAPI", "PostgreSQL", "React"],
  "state": "Production-ready with comprehensive test coverage",
  "architecture": "Microservices with REST API",
  "quality": "High - follows best practices",
  "patterns": ["MVC", "Repository Pattern", "Dependency Injection"],
  "analysis_metadata": {
    "total_files": 156,
    "total_tokens": 45000,
    "chunks_created": 12,
    "context_window": 4096,
    "model": "gemma3:4b"
  }
}
```

## ⚙️ Configuration

```bash
# Use a different Ollama server
gitllama https://github.com/user/repo.git --ollama-url http://remote-server:11434

# Use a specific model with more context
gitllama https://github.com/user/repo.git --model codellama:7b

# Verbose output for debugging
gitllama https://github.com/user/repo.git --verbose
```

## 🔧 Extending GitLlama

The modular design makes it easy to add new analysis steps:

```python
# In project_analyzer.py, each step is clearly separated:

def _step1_gather_repository_data(self, repo_path):
    """STEP 1: Gather all repository data"""
    # Add git history analysis here
    # Add dependency scanning here
    # Add security checks here

def _step2_create_chunks(self, files):
    """STEP 2: Create smart chunks"""
    # Add semantic grouping here
    # Add priority-based chunking here

def _step3_analyze_chunks(self, chunks):
    """STEP 3: Analyze each chunk"""
    # Add code quality metrics here
    # Add security scanning here
    # Add performance analysis here
```

## 📈 Performance

- **Small repos (<100 files)**: ~30 seconds
- **Medium repos (100-500 files)**: ~1-2 minutes
- **Large repos (500+ files)**: ~2-5 minutes

*Times vary based on model size and system performance*

## 🛠️ Development

```bash
git clone https://github.com/your-org/gitllama.git
cd gitllama
pip install -e ".[dev]"

# Run tests
pytest

# Check code quality
make lint
make format
make type-check
```

## 🐛 Troubleshooting

### Ollama not available?
```bash
# Check if Ollama is running
curl http://localhost:11434/api/tags

# Start Ollama
ollama serve
```

### Context window too small?
```bash
# Use a model with larger context
gitllama repo.git --model mistral:7b
```

### Analysis taking too long?
```bash
# Use a smaller, faster model
gitllama repo.git --model llama3.2:1b
```

## 📝 License

GPL v3 - see LICENSE file

## 🤝 Contributing

Contributions are welcome! The modular architecture makes it easy to add:
- New analysis steps
- Additional AI models support
- More file type handlers
- Enhanced decision strategies

## 🚀 Future Enhancements

- [ ] Git history analysis
- [ ] Dependency vulnerability scanning
- [ ] Parallel chunk processing
- [ ] Code quality metrics
- [ ] Security analysis
- [ ] Test coverage assessment
- [ ] README generation
- [ ] Automatic PR descriptions
- [ ] Multi-language documentation

---

**Note**: GitLlama requires git credentials configured for pushing to repositories. Ensure you have proper access rights to the repositories you're modifying.
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gitllama",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Your Name <your.email@example.com>",
    "keywords": "ai, automation, devops, git, llm, ollama, workflow",
    "author": null,
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/2f/9b/d4c491487dc501d6f14116d677e55e5ed601541628481df79a7376e52e03/gitllama-0.5.0.tar.gz",
    "platform": null,
    "description": "# GitLlama \ud83e\udd99\ud83e\udd16\n\nAI-powered git automation tool with deep project understanding. GitLlama v0.5.0 uses hierarchical AI analysis and intelligent single-word decision-making to clone, analyze, optimize, commit, and push your code.\n\n## \ud83c\udf1f Key Features\n\n- **\ud83e\udde0 Deep Project Analysis**: Hierarchical summarization system that understands entire codebases\n- **\ud83c\udfaf Single-Word Decision System**: AI makes deterministic decisions with fuzzy matching for reliability\n- **\ud83c\udf3f Intelligent Branch Selection**: AI analyzes existing branches and decides whether to reuse or create new ones\n- **\ud83d\udcdd TODO.md Integration**: Detects and follows project owner guidance from TODO.md files\n- **\ud83d\udcca Smart File Operations**: AI selects up to 5 files to create, modify, or delete intelligently\n- **\ud83d\udd04 Guided Questions**: AI asks strategic questions throughout analysis for better understanding\n- **\ud83d\udcc8 Synthesis & Recommendations**: Provides actionable next steps and development priorities\n- **\ud83d\udcdd Detailed Decision Tracking**: See every AI decision with confidence scores and reasoning\n\n## \ud83d\ude80 Installation\n\n```bash\npip install gitllama\n```\n\n## \ud83d\udccb Prerequisites\n\nGitLlama requires Ollama for AI-powered features:\n\n```bash\n# Install Ollama (if not already installed)\ncurl -fsSL https://ollama.com/install.sh | sh\n\n# Start Ollama server\nollama serve\n\n# Pull a recommended model\nollama pull gemma3:4b\n```\n\n## \ud83d\udcbb Usage\n\n### Basic usage (recommended):\n\n```bash\ngitllama https://github.com/user/repo.git\n```\n\n### With custom model:\n\n```bash\ngitllama https://github.com/user/repo.git --model llama3:8b\n```\n\n### With specific branch (AI handles all other decisions):\n\n```bash\ngitllama https://github.com/user/repo.git --branch feature/my-improvement\n```\n\n### Verbose mode (see all AI decisions):\n\n```bash\ngitllama https://github.com/user/repo.git --verbose\n```\n\n## \ud83d\udd2c How It Works\n\nGitLlama uses a sophisticated multi-step process to understand and improve repositories:\n\n### 1. **Deep Repository Analysis** \ud83d\udd0d\n   - **Step 1: Data Gathering** - Scans all text files, configs, and documentation\n   - **Step 2: Smart Chunking** - Groups files to maximize AI context window usage\n   - **Step 3: Parallel Analysis** - Each chunk analyzed independently for scalability\n   - **Step 4: Hierarchical Merging** - Combines summaries using merge-sort approach\n   - **Step 5: Result Formatting** - Creates structured insights about the project\n\n### 2. **Intelligent Workflow** \ud83e\udd16\n   1. **Clones the repository**\n   2. **AI explores the project** - Deep multi-level analysis across all branches\n   3. **AI analyzes existing branches** - Evaluates reuse potential and compatibility\n   4. **AI decides on branch strategy** - Smart selection between reusing existing or creating new\n   5. **AI makes intelligent changes** - Based on comprehensive project understanding\n   6. **AI generates commit message** - Follows conventional commit format\n   7. **Pushes to remote**\n\n### Example Analysis Output:\n```\nStarting hierarchical repository analysis\n============================================================\nSTEP 1: DATA GATHERING\n  Found 45 files with 12500 total tokens\nSTEP 2: CHUNKING\n  Created 5 chunks for analysis\n    Chunk 1: 12 files, 2500 tokens\n    Chunk 2: 10 files, 2800 tokens\n    Chunk 3: 8 files, 2200 tokens\n    Chunk 4: 9 files, 2600 tokens\n    Chunk 5: 6 files, 2400 tokens\nSTEP 3: CHUNK ANALYSIS\n  Analyzing 5 chunks\n    Processing chunk 1/5...\n    Processing chunk 2/5...\n    ...\nSTEP 4: HIERARCHICAL MERGING\n  Starting hierarchical merge of 5 summaries\n    Level 1: Merging 5 summaries (1800 tokens)\nSTEP 5: FORMAT RESULTS\n  Formatting final results\n============================================================\nRepository analysis complete!\n```\n\n### 3. **Intelligent Branch Selection** \ud83c\udf3f\n\nGitLlama now features sophisticated branch analysis and selection:\n\n```\nStarting intelligent branch selection process\n============================================================\nSTEP 1: ANALYZE EXISTING BRANCHES\n  Analyzing purposes of 3 branches\n    Branch 'feature/auth-system': Production-ready authentication system\n    Branch 'wip-database': Work-in-progress database optimization\n    Branch 'docs/api': API documentation updates\nSTEP 2: EVALUATE REUSE POTENTIAL\n  Evaluating reuse potential for existing branches\n    wip-database: score=45, reasons=work-in-progress branch, matching project type\n    feature/auth-system: score=35, reasons=feature branch, matching technologies\nSTEP 3: MAKE BRANCH DECISION\n  Making branch selection decision\n\ud83e\udd16 AI: Deciding branch selection strategy with 2 candidates\n    Decision: REUSE - High compatibility with existing WIP branch\nSTEP 4: GENERATE/SELECT BRANCH NAME\n  Finalizing branch selection\n    Selected existing branch: wip-database\n============================================================\nBranch selection complete: wip-database\n```\n\n#### Branch Selection Features:\n- **\ud83d\udd0d Multi-branch Analysis**: Examines all branches in the repository\n- **\ud83c\udfaf Smart Scoring**: Evaluates compatibility based on project type, technologies, and purpose\n- **\ud83d\udd04 Reuse Preference**: Strongly favors reusing existing branches (80% bias)\n- **\ud83c\udfd7\ufe0f Branch Classification**: Identifies feature, fix, docs, and WIP branches\n- **\u2699\ufe0f Intelligent Fallback**: Creates new branches with meaningful names when needed\n\n## \ud83d\udc0d Python API\n\n```python\nfrom gitllama import GitAutomator, AICoordinator\n\n# With AI - Full intelligent automation\nai = AICoordinator(model=\"gemma3:4b\")\nwith GitAutomator(ai_coordinator=ai) as automator:\n    results = automator.run_full_workflow(\n        git_url=\"https://github.com/user/repo.git\"\n    )\n    \n    print(f\"Success: {results['success']}\")\n    print(f\"Branch created: {results['branch']}\")\n    print(f\"Files modified: {results['modified_files']}\")\n    \n    # Access detailed AI analysis\n    if 'ai_analysis' in results:\n        analysis = results['ai_analysis']\n        print(f\"Project Type: {analysis['project_type']}\")\n        print(f\"Technologies: {', '.join(analysis['technologies'])}\")\n        print(f\"Code Quality: {analysis['quality']}\")\n        print(f\"Architecture: {analysis['architecture']}\")\n\n# Without AI - Simple automation\nwith GitAutomator() as automator:\n    results = automator.run_full_workflow(\n        git_url=\"https://github.com/user/repo.git\",\n        branch_name=\"my-branch\",\n        commit_message=\"My changes\"\n    )\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nGitLlama is built with a modular architecture for easy extension:\n\n```\ngitllama/\n\u251c\u2500\u2500 cli.py              # Command-line interface\n\u251c\u2500\u2500 git_operations.py   # Git automation logic\n\u251c\u2500\u2500 ai_coordinator.py   # AI workflow coordination\n\u251c\u2500\u2500 project_analyzer.py # Hierarchical project analysis\n\u251c\u2500\u2500 branch_analyzer.py  # Intelligent branch selection (NEW!)\n\u251c\u2500\u2500 config.py           # Configuration and logging setup\n\u2514\u2500\u2500 ollama_client.py    # Ollama API integration\n```\n\n### Key Components:\n\n- **ProjectAnalyzer**: Handles the 5-step hierarchical analysis process\n- **BranchAnalyzer**: Intelligent branch selection with 4-step decision pipeline (NEW!)\n- **AICoordinator**: Orchestrates AI decisions throughout the workflow\n- **GitAutomator**: Manages git operations with optional AI integration\n- **OllamaClient**: Interfaces with local Ollama models\n\n## \ud83e\udd16 AI Models\n\nThe tool works with any Ollama model. Recommended models:\n\n- `gemma3:4b` - Fast and efficient (default)\n- `llama3.2:1b` - Ultra-fast for simple tasks\n- `codellama:7b` - Optimized for code understanding\n- `mistral:7b` - Good general purpose\n- `gemma2:2b` - Very fast, good for simple tasks\n\n### Context Window Sizes:\n- Small models (1-3B): ~2-4K tokens\n- Medium models (7B): ~4-8K tokens\n- Large models (13B+): ~8-16K tokens\n\n## \ud83c\udfaf What Gets Analyzed\n\nGitLlama intelligently analyzes:\n- Source code files (Python, JavaScript, Java, Go, Rust, etc.)\n- Configuration files (JSON, YAML, TOML, etc.)\n- Documentation (Markdown, README, LICENSE)\n- Build files (Dockerfile, Makefile, package.json)\n- Scripts (Shell, Batch, PowerShell)\n- Web assets (HTML, CSS, XML)\n\n## \ud83d\udcca Analysis Results\n\nThe AI provides multi-level insights:\n\n```json\n{\n  \"project_type\": \"web-application\",\n  \"technologies\": [\"Python\", \"FastAPI\", \"PostgreSQL\", \"React\"],\n  \"state\": \"Production-ready with comprehensive test coverage\",\n  \"architecture\": \"Microservices with REST API\",\n  \"quality\": \"High - follows best practices\",\n  \"patterns\": [\"MVC\", \"Repository Pattern\", \"Dependency Injection\"],\n  \"analysis_metadata\": {\n    \"total_files\": 156,\n    \"total_tokens\": 45000,\n    \"chunks_created\": 12,\n    \"context_window\": 4096,\n    \"model\": \"gemma3:4b\"\n  }\n}\n```\n\n## \u2699\ufe0f Configuration\n\n```bash\n# Use a different Ollama server\ngitllama https://github.com/user/repo.git --ollama-url http://remote-server:11434\n\n# Use a specific model with more context\ngitllama https://github.com/user/repo.git --model codellama:7b\n\n# Verbose output for debugging\ngitllama https://github.com/user/repo.git --verbose\n```\n\n## \ud83d\udd27 Extending GitLlama\n\nThe modular design makes it easy to add new analysis steps:\n\n```python\n# In project_analyzer.py, each step is clearly separated:\n\ndef _step1_gather_repository_data(self, repo_path):\n    \"\"\"STEP 1: Gather all repository data\"\"\"\n    # Add git history analysis here\n    # Add dependency scanning here\n    # Add security checks here\n\ndef _step2_create_chunks(self, files):\n    \"\"\"STEP 2: Create smart chunks\"\"\"\n    # Add semantic grouping here\n    # Add priority-based chunking here\n\ndef _step3_analyze_chunks(self, chunks):\n    \"\"\"STEP 3: Analyze each chunk\"\"\"\n    # Add code quality metrics here\n    # Add security scanning here\n    # Add performance analysis here\n```\n\n## \ud83d\udcc8 Performance\n\n- **Small repos (<100 files)**: ~30 seconds\n- **Medium repos (100-500 files)**: ~1-2 minutes\n- **Large repos (500+ files)**: ~2-5 minutes\n\n*Times vary based on model size and system performance*\n\n## \ud83d\udee0\ufe0f Development\n\n```bash\ngit clone https://github.com/your-org/gitllama.git\ncd gitllama\npip install -e \".[dev]\"\n\n# Run tests\npytest\n\n# Check code quality\nmake lint\nmake format\nmake type-check\n```\n\n## \ud83d\udc1b Troubleshooting\n\n### Ollama not available?\n```bash\n# Check if Ollama is running\ncurl http://localhost:11434/api/tags\n\n# Start Ollama\nollama serve\n```\n\n### Context window too small?\n```bash\n# Use a model with larger context\ngitllama repo.git --model mistral:7b\n```\n\n### Analysis taking too long?\n```bash\n# Use a smaller, faster model\ngitllama repo.git --model llama3.2:1b\n```\n\n## \ud83d\udcdd License\n\nGPL v3 - see LICENSE file\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! The modular architecture makes it easy to add:\n- New analysis steps\n- Additional AI models support\n- More file type handlers\n- Enhanced decision strategies\n\n## \ud83d\ude80 Future Enhancements\n\n- [ ] Git history analysis\n- [ ] Dependency vulnerability scanning\n- [ ] Parallel chunk processing\n- [ ] Code quality metrics\n- [ ] Security analysis\n- [ ] Test coverage assessment\n- [ ] README generation\n- [ ] Automatic PR descriptions\n- [ ] Multi-language documentation\n\n---\n\n**Note**: GitLlama requires git credentials configured for pushing to repositories. Ensure you have proper access rights to the repositories you're modifying.",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "AI-powered git automation tool - clone, branch, change, commit, push with intelligence",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/your-org/gitllama",
        "Issues": "https://github.com/your-org/gitllama/issues",
        "Repository": "https://github.com/your-org/gitllama.git"
    },
    "split_keywords": [
        "ai",
        " automation",
        " devops",
        " git",
        " llm",
        " ollama",
        " workflow"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "752ef8ea679a21f66cd80d13ef19ffe6cb11b67db2355ab44c98b5e2190d9b90",
                "md5": "4b4ed3a185ea32e18280ba0d956e84fd",
                "sha256": "99b2590d6d897c289722645170c12090662bf78b9b8942ceae5e2fc6d7af0d4f"
            },
            "downloads": -1,
            "filename": "gitllama-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4b4ed3a185ea32e18280ba0d956e84fd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 84550,
            "upload_time": "2025-08-18T00:48:27",
            "upload_time_iso_8601": "2025-08-18T00:48:27.898509Z",
            "url": "https://files.pythonhosted.org/packages/75/2e/f8ea679a21f66cd80d13ef19ffe6cb11b67db2355ab44c98b5e2190d9b90/gitllama-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2f9bd4c491487dc501d6f14116d677e55e5ed601541628481df79a7376e52e03",
                "md5": "ca0e88610dc73cfba8f9ba67281663be",
                "sha256": "46f3c19f90a7ce86034839c42fccf6e45fe3c17150e0a802df45bdd862cdfc0a"
            },
            "downloads": -1,
            "filename": "gitllama-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ca0e88610dc73cfba8f9ba67281663be",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 79460,
            "upload_time": "2025-08-18T00:48:29",
            "upload_time_iso_8601": "2025-08-18T00:48:29.121934Z",
            "url": "https://files.pythonhosted.org/packages/2f/9b/d4c491487dc501d6f14116d677e55e5ed601541628481df79a7376e52e03/gitllama-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-18 00:48:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "your-org",
    "github_project": "gitllama",
    "github_not_found": true,
    "lcname": "gitllama"
}
        
Elapsed time: 0.70930s