glasses-detector


Nameglasses-detector JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/mantasu/glasses-detector
SummaryGlasses classification, detection, and segmentation.
upload_time2024-03-06 07:17:04
maintainer
docs_urlNone
authorMantas Birškus
requires_python>=3.12
licenseMIT
keywords python pytorch torchvision computer vision image face eyes transparent opaque glasses googles spectacles eyeglasses sunglasses frames lenses legs shadows binary identification identifier classification classifier segmentation segmenter detection detector cuda mps gpu
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<h1 align="center"><img src="https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/img/logo-light.png" width=27px height=27px> Glasses Detector</h1>

<div align="center">

[![Colab](https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/svg/colab.svg)](https://colab.research.google.com/github/mantasu/glasses-detector/blob/main/notebooks/demo.ipynb)
[![Docs](https://github.com/mantasu/glasses-detector/actions/workflows/sphinx.yaml/badge.svg)](https://mantasu.github.io/glasses-detector/)
[![PyPI](https://img.shields.io/pypi/v/glasses-detector?color=yellow&logo=)](https://pypi.org/project/glasses-detector/)
[![Python](https://img.shields.io/badge/python-≥%203.12-blue?logo=)](https://docs.python.org/3/)
[![CUDA](https://img.shields.io/badge/cuda-yes-5eb304?logo=nvidia)](https://developer.nvidia.com/cuda-toolkit)
[![DOI](https://img.shields.io/badge/doi-10.5281/zenodo.8126101-ad55d9?logo=)](https://zenodo.org/badge/latestdoi/610509640)
[![License](https://img.shields.io/badge/license-MIT-red?logo=)](https://opensource.org/licenses/MIT)

![Banner](https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/img/banner.jpg)

</div>

## About

Package for processing images with different types of glasses and their parts. It provides a quick way to use the pre-trained models for **3** kinds of tasks, each divided into multiple categories, for instance, *classification of sunglasses* or *segmentation of glasses frames*.

<br>

<div align="center">

<table align="center"><tbody>
    <tr><td><strong>Classification</string></td> <td> 👓 <em>transparent</em> 🕶️ <em>opaque</em> 🥽 <em>any</em> ➿<em>shadows</em></td></tr>
    <tr><td><strong>Detection</string></td> <td> 🤓 <em>worn</em> 👓  <em>standalone</em> 👀 <em>eye-area</em></td></tr>
    <tr><td><strong>Segmentation</string></td> <td> 😎 <em>full</em> 🖼️ <em>frames</em> 🦿 <em>legs</em> 🔍 <em>lenses</em> 👥 <em>shadows</em></td></tr>
</tbody></table>

$\color{gray}{\textit{Note: }\text{refer to}}$ [Glasses Detector Features](https://mantasu.github.io/glasses-detector/docs/features.html) $\color{gray}{\text{for visual examples.}}$

</div>

## Installation

> [!IMPORTANT]
> Minimum version of [Python 3.12](https://www.python.org/downloads/release/python-3120/) is required. Also, you may want to install [Pytorch](https://pytorch.org/get-started/locally/) (select *Nightly* for compatibility) in advance to select specific configuration for your device and environment.

### Pip Package

If you only need the library with pre-trained models, just install the [pip package](https://pypi.org/project/glasses-detector/) and see **Quick Start** for usage (also check [Glasses Detector Installation](https://mantasu.github.io/glasses-detector/docs/features.html) for more details):

```bash
pip install glasses-detector
```

You can also install it from the source:

```bash
git clone https://github.com/mantasu/glasses-detector
cd glasses-detector && pip install .
```

### Local Project

If you want to train your own models on the given datasets (or on some other datasets), just clone the project and install training requirements, then see **[Running](https://github.com/mantasu/glasses-detector?tab=readme-ov-file#running)** section to see how to run training and testing.

```bash
git clone https://github.com/mantasu/glasses-detector
cd glasses-detector && pip install -r requirements.txt
```

You can create a virtual environment for your packages via [venv](https://docs.python.org/3/library/venv.html), however, if you have conda, then you can simply use it to create a new environment, for example:

```bash
conda create -n glasses-detector python=3.12
conda activate glasses-detector 
```

> To set-up the datasets, refer to **[Data](https://github.com/mantasu/glasses-detector?tab=readme-ov-file#data)** section.

## Quick Start

### Command Line

You can run predictions via the command line. For example, classification of a single image and segmentation of images inside a directory can be performed by running:

```bash
glasses-detector -i path/to/img.jpg -t classification -d cuda -f int # Prints 1 or 0
glasses-detector -i path/to/img_dir -t segmentation -f mask -e .jpg  # Generates masks
```

> [!TIP]
> You can also specify things like `--output-path`, `--size`, `--batch-size` etc. Check the [Glasses Detector CLI](https://mantasu.github.io/glasses-detector/docs/cli.html) and [Command Line Examples](https://mantasu.github.io/glasses-detector/docs/examples.html#command-line) for more details.

### Python Script

You can import the package and its models via the python script for more flexibility. Here is an example of how to classify people wearing sunglasses:

```python
from glasses_detector import GlassesClassifier

# Generates a CSV with each line "<img_name.jpg>,<True|False>"
classifier = GlassesClassifier(size="small", kind="sunglasses")
classifier.process_dir("path/to/dir", "path/to/preds.csv", format="bool")
```

And here is a more efficient way to process a dir for detection task (only single bbox per image is currently supported):

```python
from glasses_detector import GlassesDetector

# Generates dir_preds with bboxes as .txt for each img
detector = GlassesDetector(kind="eyes", device="cuda")
detector.process_dir("path/to/dir", ext=".txt", batch_size=64)
```

> [!TIP]
> Again, there are a lot more things that can be specified, for instance, `output_size` and `pbar`. It is also possible to directly output the results or save them in a variable. See [Glasses Detector API](https://mantasu.github.io/glasses-detector/docs/api.html) and [Python Script Examples](https://mantasu.github.io/glasses-detector/docs/examples.html#python-script) for more details.

### Demo

Feel free to play around with some [demo image files](https://github.com/mantasu/glasses-detector/demo/). For example, after installing through [pip](https://pypi.org/project/glasses-detector/), you can run:

```bash
git clone https://github.com/mantasu/glasses-detector && cd glasses-detector/data
glasses-detector -i demo -o demo_labels.csv --task classification:eyeglasses
```

You can also check out the [demo notebook](https://github.com/mantasu/glasses-detector/notebooks/demo.ipynb) which can be also accessed via [Google Colab](https://colab.research.google.com/github/mantasu/glasses-detector/blob/master/notebooks/demo.ipynb).

## Credits

For references and citation, please see [Glasses Detector Credits](https://mantasu.github.io/glasses-detector/docs/credits.html).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mantasu/glasses-detector",
    "name": "glasses-detector",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": "",
    "keywords": "python,pytorch,torchvision,computer,vision,image,face,eyes,transparent,opaque,glasses,googles,spectacles,eyeglasses,sunglasses,frames,lenses,legs,shadows,binary,identification,identifier,classification,classifier,segmentation,segmenter,detection,detector,cuda,mps,gpu",
    "author": "Mantas Bir\u0161kus",
    "author_email": "mantix7@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/05/83/e516b2c3513848f16fa58b1597107718efb98e511c846f05e5356824847d/glasses-detector-1.0.1.tar.gz",
    "platform": null,
    "description": "\n<h1 align=\"center\"><img src=\"https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/img/logo-light.png\" width=27px height=27px> Glasses Detector</h1>\n\n<div align=\"center\">\n\n[![Colab](https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/svg/colab.svg)](https://colab.research.google.com/github/mantasu/glasses-detector/blob/main/notebooks/demo.ipynb)\n[![Docs](https://github.com/mantasu/glasses-detector/actions/workflows/sphinx.yaml/badge.svg)](https://mantasu.github.io/glasses-detector/)\n[![PyPI](https://img.shields.io/pypi/v/glasses-detector?color=yellow&logo=)](https://pypi.org/project/glasses-detector/)\n[![Python](https://img.shields.io/badge/python-\u2265%203.12-blue?logo=)](https://docs.python.org/3/)\n[![CUDA](https://img.shields.io/badge/cuda-yes-5eb304?logo=nvidia)](https://developer.nvidia.com/cuda-toolkit)\n[![DOI](https://img.shields.io/badge/doi-10.5281/zenodo.8126101-ad55d9?logo=)](https://zenodo.org/badge/latestdoi/610509640)\n[![License](https://img.shields.io/badge/license-MIT-red?logo=)](https://opensource.org/licenses/MIT)\n\n![Banner](https://raw.githubusercontent.com/mantasu/glasses-detector/main/docs/_static/img/banner.jpg)\n\n</div>\n\n## About\n\nPackage for processing images with different types of glasses and their parts. It provides a quick way to use the pre-trained models for **3** kinds of tasks, each divided into multiple categories, for instance, *classification of sunglasses* or *segmentation of glasses frames*.\n\n<br>\n\n<div align=\"center\">\n\n<table align=\"center\"><tbody>\n    <tr><td><strong>Classification</string></td> <td> \ud83d\udc53 <em>transparent</em> \ud83d\udd76\ufe0f <em>opaque</em> \ud83e\udd7d <em>any</em> \u27bf<em>shadows</em></td></tr>\n    <tr><td><strong>Detection</string></td> <td> \ud83e\udd13 <em>worn</em> \ud83d\udc53  <em>standalone</em> \ud83d\udc40 <em>eye-area</em></td></tr>\n    <tr><td><strong>Segmentation</string></td> <td> \ud83d\ude0e <em>full</em> \ud83d\uddbc\ufe0f <em>frames</em> \ud83e\uddbf <em>legs</em> \ud83d\udd0d <em>lenses</em> \ud83d\udc65 <em>shadows</em></td></tr>\n</tbody></table>\n\n$\\color{gray}{\\textit{Note: }\\text{refer to}}$ [Glasses Detector Features](https://mantasu.github.io/glasses-detector/docs/features.html) $\\color{gray}{\\text{for visual examples.}}$\n\n</div>\n\n## Installation\n\n> [!IMPORTANT]\n> Minimum version of [Python 3.12](https://www.python.org/downloads/release/python-3120/) is required. Also, you may want to install [Pytorch](https://pytorch.org/get-started/locally/) (select *Nightly* for compatibility) in advance to select specific configuration for your device and environment.\n\n### Pip Package\n\nIf you only need the library with pre-trained models, just install the [pip package](https://pypi.org/project/glasses-detector/) and see **Quick Start** for usage (also check [Glasses Detector Installation](https://mantasu.github.io/glasses-detector/docs/features.html) for more details):\n\n```bash\npip install glasses-detector\n```\n\nYou can also install it from the source:\n\n```bash\ngit clone https://github.com/mantasu/glasses-detector\ncd glasses-detector && pip install .\n```\n\n### Local Project\n\nIf you want to train your own models on the given datasets (or on some other datasets), just clone the project and install training requirements, then see **[Running](https://github.com/mantasu/glasses-detector?tab=readme-ov-file#running)** section to see how to run training and testing.\n\n```bash\ngit clone https://github.com/mantasu/glasses-detector\ncd glasses-detector && pip install -r requirements.txt\n```\n\nYou can create a virtual environment for your packages via [venv](https://docs.python.org/3/library/venv.html), however, if you have conda, then you can simply use it to create a new environment, for example:\n\n```bash\nconda create -n glasses-detector python=3.12\nconda activate glasses-detector \n```\n\n> To set-up the datasets, refer to **[Data](https://github.com/mantasu/glasses-detector?tab=readme-ov-file#data)** section.\n\n## Quick Start\n\n### Command Line\n\nYou can run predictions via the command line. For example, classification of a single image and segmentation of images inside a directory can be performed by running:\n\n```bash\nglasses-detector -i path/to/img.jpg -t classification -d cuda -f int # Prints 1 or 0\nglasses-detector -i path/to/img_dir -t segmentation -f mask -e .jpg  # Generates masks\n```\n\n> [!TIP]\n> You can also specify things like `--output-path`, `--size`, `--batch-size` etc. Check the [Glasses Detector CLI](https://mantasu.github.io/glasses-detector/docs/cli.html) and [Command Line Examples](https://mantasu.github.io/glasses-detector/docs/examples.html#command-line) for more details.\n\n### Python Script\n\nYou can import the package and its models via the python script for more flexibility. Here is an example of how to classify people wearing sunglasses:\n\n```python\nfrom glasses_detector import GlassesClassifier\n\n# Generates a CSV with each line \"<img_name.jpg>,<True|False>\"\nclassifier = GlassesClassifier(size=\"small\", kind=\"sunglasses\")\nclassifier.process_dir(\"path/to/dir\", \"path/to/preds.csv\", format=\"bool\")\n```\n\nAnd here is a more efficient way to process a dir for detection task (only single bbox per image is currently supported):\n\n```python\nfrom glasses_detector import GlassesDetector\n\n# Generates dir_preds with bboxes as .txt for each img\ndetector = GlassesDetector(kind=\"eyes\", device=\"cuda\")\ndetector.process_dir(\"path/to/dir\", ext=\".txt\", batch_size=64)\n```\n\n> [!TIP]\n> Again, there are a lot more things that can be specified, for instance, `output_size` and `pbar`. It is also possible to directly output the results or save them in a variable. See [Glasses Detector API](https://mantasu.github.io/glasses-detector/docs/api.html) and [Python Script Examples](https://mantasu.github.io/glasses-detector/docs/examples.html#python-script) for more details.\n\n### Demo\n\nFeel free to play around with some [demo image files](https://github.com/mantasu/glasses-detector/demo/). For example, after installing through [pip](https://pypi.org/project/glasses-detector/), you can run:\n\n```bash\ngit clone https://github.com/mantasu/glasses-detector && cd glasses-detector/data\nglasses-detector -i demo -o demo_labels.csv --task classification:eyeglasses\n```\n\nYou can also check out the [demo notebook](https://github.com/mantasu/glasses-detector/notebooks/demo.ipynb) which can be also accessed via [Google Colab](https://colab.research.google.com/github/mantasu/glasses-detector/blob/master/notebooks/demo.ipynb).\n\n## Credits\n\nFor references and citation, please see [Glasses Detector Credits](https://mantasu.github.io/glasses-detector/docs/credits.html).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Glasses classification, detection, and segmentation.",
    "version": "1.0.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/mantasu/glasses-detector/issues",
        "Documentation": "https://mantasu.github.io/glasses-detector",
        "Homepage": "https://github.com/mantasu/glasses-detector"
    },
    "split_keywords": [
        "python",
        "pytorch",
        "torchvision",
        "computer",
        "vision",
        "image",
        "face",
        "eyes",
        "transparent",
        "opaque",
        "glasses",
        "googles",
        "spectacles",
        "eyeglasses",
        "sunglasses",
        "frames",
        "lenses",
        "legs",
        "shadows",
        "binary",
        "identification",
        "identifier",
        "classification",
        "classifier",
        "segmentation",
        "segmenter",
        "detection",
        "detector",
        "cuda",
        "mps",
        "gpu"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4fef9814e49ca8297ecc1b408c095ec33126dae386259e83ef82f08db8c607a9",
                "md5": "eacc6a6c28521ec5fa54c9a4f80bed7d",
                "sha256": "adc7d49ca3bd4577195b554ff403ecb62410a811205e8bad67d6ceac1fe01954"
            },
            "downloads": -1,
            "filename": "glasses_detector-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eacc6a6c28521ec5fa54c9a4f80bed7d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 73661,
            "upload_time": "2024-03-06T07:17:01",
            "upload_time_iso_8601": "2024-03-06T07:17:01.735787Z",
            "url": "https://files.pythonhosted.org/packages/4f/ef/9814e49ca8297ecc1b408c095ec33126dae386259e83ef82f08db8c607a9/glasses_detector-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0583e516b2c3513848f16fa58b1597107718efb98e511c846f05e5356824847d",
                "md5": "3a63380396e9346b1b25b1b96ab9d0d1",
                "sha256": "3a03b653a5a255115db87f1d1b1ad452e0a0e1ecc96c88d37677b7bb45335272"
            },
            "downloads": -1,
            "filename": "glasses-detector-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3a63380396e9346b1b25b1b96ab9d0d1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 87590,
            "upload_time": "2024-03-06T07:17:04",
            "upload_time_iso_8601": "2024-03-06T07:17:04.513162Z",
            "url": "https://files.pythonhosted.org/packages/05/83/e516b2c3513848f16fa58b1597107718efb98e511c846f05e5356824847d/glasses-detector-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-06 07:17:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mantasu",
    "github_project": "glasses-detector",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "glasses-detector"
}
        
Elapsed time: 0.20933s