gpt4all-j


Namegpt4all-j JSON
Version 0.2.6 PyPI version JSON
download
home_pagehttps://github.com/marella/gpt4all-j
SummaryPython bindings for the C++ port of GPT4All-J model.
upload_time2023-05-15 00:27:41
maintainer
docs_urlNone
authorRavindra Marella
requires_python
licenseMIT
keywords gpt4all-j gpt4all gpt-j ai llm cpp
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # [GPT4All-J](https://github.com/marella/gpt4all-j) [![PyPI](https://img.shields.io/pypi/v/gpt4all-j)](https://pypi.org/project/gpt4all-j/) [![tests](https://github.com/marella/gpt4all-j/actions/workflows/tests.yml/badge.svg)](https://github.com/marella/gpt4all-j/actions/workflows/tests.yml)

Python bindings for the [C++ port][gptj.cpp] of GPT4All-J model.

> Please migrate to [`ctransformers`](https://github.com/marella/ctransformers) library which supports more models and has more features.

## Installation

```sh
pip install gpt4all-j
```

Download the model from [here](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin).

## Usage

```py
from gpt4allj import Model

model = Model('/path/to/ggml-gpt4all-j.bin')

print(model.generate('AI is going to'))
```

[Run in Google Colab](https://colab.research.google.com/drive/1bd38-i1Qlx6_MvJyCTJOy7t8eHSNnqAx)

If you are getting `illegal instruction` error, try using `instructions='avx'` or `instructions='basic'`:

```py
model = Model('/path/to/ggml-gpt4all-j.bin', instructions='avx')
```

If it is running slow, try building the C++ library from source. [Learn more](https://github.com/marella/gpt4all-j#c-library)

### Parameters

```py
model.generate(prompt,
               seed=-1,
               n_threads=-1,
               n_predict=200,
               top_k=40,
               top_p=0.9,
               temp=0.9,
               repeat_penalty=1.0,
               repeat_last_n=64,
               n_batch=8,
               reset=True,
               callback=None)
```

#### `reset`

If `True`, context will be reset. To keep the previous context, use `reset=False`.

```py
model.generate('Write code to sort numbers in Python.')
model.generate('Rewrite the code in JavaScript.', reset=False)
```

#### `callback`

If a callback function is passed, it will be called once per each generated token. To stop generating more tokens, return `False` inside the callback function.

```py
def callback(token):
    print(token)

model.generate('AI is going to', callback=callback)
```

## LangChain

[LangChain](https://python.langchain.com/) is a framework for developing applications powered by language models. A LangChain LLM object for the GPT4All-J model can be created using:

```py
from gpt4allj.langchain import GPT4AllJ

llm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin')

print(llm('AI is going to'))
```

If you are getting `illegal instruction` error, try using `instructions='avx'` or `instructions='basic'`:

```py
llm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin', instructions='avx')
```

It can be used with other LangChain modules:

```py
from langchain import PromptTemplate, LLMChain

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=['question'])

llm_chain = LLMChain(prompt=prompt, llm=llm)

print(llm_chain.run('What is AI?'))
```

### Parameters

```py
llm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin',
               seed=-1,
               n_threads=-1,
               n_predict=200,
               top_k=40,
               top_p=0.9,
               temp=0.9,
               repeat_penalty=1.0,
               repeat_last_n=64,
               n_batch=8,
               reset=True)
```

## C++ Library

To build the C++ library from source, please see [gptj.cpp][gptj.cpp]. Once you have built the shared libraries, you can use them as:

```py
from gpt4allj import Model, load_library

lib = load_library('/path/to/libgptj.so', '/path/to/libggml.so')

model = Model('/path/to/ggml-gpt4all-j.bin', lib=lib)
```

## License

[MIT](https://github.com/marella/gpt4all-j/blob/main/LICENSE)

[gptj.cpp]: https://github.com/marella/gptj.cpp
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/marella/gpt4all-j",
    "name": "gpt4all-j",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "gpt4all-j gpt4all gpt-j ai llm cpp",
    "author": "Ravindra Marella",
    "author_email": "mv.ravindra007@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5a/48/7c6c8a4d3262b77f8b909b2ca49d3d2196ce5bbbbad8192533a7a9da26d3/gpt4all-j-0.2.6.tar.gz",
    "platform": null,
    "description": "# [GPT4All-J](https://github.com/marella/gpt4all-j) [![PyPI](https://img.shields.io/pypi/v/gpt4all-j)](https://pypi.org/project/gpt4all-j/) [![tests](https://github.com/marella/gpt4all-j/actions/workflows/tests.yml/badge.svg)](https://github.com/marella/gpt4all-j/actions/workflows/tests.yml)\n\nPython bindings for the [C++ port][gptj.cpp] of GPT4All-J model.\n\n> Please migrate to [`ctransformers`](https://github.com/marella/ctransformers) library which supports more models and has more features.\n\n## Installation\n\n```sh\npip install gpt4all-j\n```\n\nDownload the model from [here](https://gpt4all.io/models/ggml-gpt4all-j-v1.3-groovy.bin).\n\n## Usage\n\n```py\nfrom gpt4allj import Model\n\nmodel = Model('/path/to/ggml-gpt4all-j.bin')\n\nprint(model.generate('AI is going to'))\n```\n\n[Run in Google Colab](https://colab.research.google.com/drive/1bd38-i1Qlx6_MvJyCTJOy7t8eHSNnqAx)\n\nIf you are getting `illegal instruction` error, try using `instructions='avx'` or `instructions='basic'`:\n\n```py\nmodel = Model('/path/to/ggml-gpt4all-j.bin', instructions='avx')\n```\n\nIf it is running slow, try building the C++ library from source. [Learn more](https://github.com/marella/gpt4all-j#c-library)\n\n### Parameters\n\n```py\nmodel.generate(prompt,\n               seed=-1,\n               n_threads=-1,\n               n_predict=200,\n               top_k=40,\n               top_p=0.9,\n               temp=0.9,\n               repeat_penalty=1.0,\n               repeat_last_n=64,\n               n_batch=8,\n               reset=True,\n               callback=None)\n```\n\n#### `reset`\n\nIf `True`, context will be reset. To keep the previous context, use `reset=False`.\n\n```py\nmodel.generate('Write code to sort numbers in Python.')\nmodel.generate('Rewrite the code in JavaScript.', reset=False)\n```\n\n#### `callback`\n\nIf a callback function is passed, it will be called once per each generated token. To stop generating more tokens, return `False` inside the callback function.\n\n```py\ndef callback(token):\n    print(token)\n\nmodel.generate('AI is going to', callback=callback)\n```\n\n## LangChain\n\n[LangChain](https://python.langchain.com/) is a framework for developing applications powered by language models. A LangChain LLM object for the GPT4All-J model can be created using:\n\n```py\nfrom gpt4allj.langchain import GPT4AllJ\n\nllm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin')\n\nprint(llm('AI is going to'))\n```\n\nIf you are getting `illegal instruction` error, try using `instructions='avx'` or `instructions='basic'`:\n\n```py\nllm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin', instructions='avx')\n```\n\nIt can be used with other LangChain modules:\n\n```py\nfrom langchain import PromptTemplate, LLMChain\n\ntemplate = \"\"\"Question: {question}\n\nAnswer:\"\"\"\n\nprompt = PromptTemplate(template=template, input_variables=['question'])\n\nllm_chain = LLMChain(prompt=prompt, llm=llm)\n\nprint(llm_chain.run('What is AI?'))\n```\n\n### Parameters\n\n```py\nllm = GPT4AllJ(model='/path/to/ggml-gpt4all-j.bin',\n               seed=-1,\n               n_threads=-1,\n               n_predict=200,\n               top_k=40,\n               top_p=0.9,\n               temp=0.9,\n               repeat_penalty=1.0,\n               repeat_last_n=64,\n               n_batch=8,\n               reset=True)\n```\n\n## C++ Library\n\nTo build the C++ library from source, please see [gptj.cpp][gptj.cpp]. Once you have built the shared libraries, you can use them as:\n\n```py\nfrom gpt4allj import Model, load_library\n\nlib = load_library('/path/to/libgptj.so', '/path/to/libggml.so')\n\nmodel = Model('/path/to/ggml-gpt4all-j.bin', lib=lib)\n```\n\n## License\n\n[MIT](https://github.com/marella/gpt4all-j/blob/main/LICENSE)\n\n[gptj.cpp]: https://github.com/marella/gptj.cpp",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python bindings for the C++ port of GPT4All-J model.",
    "version": "0.2.6",
    "project_urls": {
        "Homepage": "https://github.com/marella/gpt4all-j"
    },
    "split_keywords": [
        "gpt4all-j",
        "gpt4all",
        "gpt-j",
        "ai",
        "llm",
        "cpp"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5a487c6c8a4d3262b77f8b909b2ca49d3d2196ce5bbbbad8192533a7a9da26d3",
                "md5": "373a8e6526f4981258964904c67f8cd5",
                "sha256": "d2681cc4b7974586ecd4fa614fbb7e315bb787944a66f6b5e103f202c004fa40"
            },
            "downloads": -1,
            "filename": "gpt4all-j-0.2.6.tar.gz",
            "has_sig": false,
            "md5_digest": "373a8e6526f4981258964904c67f8cd5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1800003,
            "upload_time": "2023-05-15T00:27:41",
            "upload_time_iso_8601": "2023-05-15T00:27:41.447382Z",
            "url": "https://files.pythonhosted.org/packages/5a/48/7c6c8a4d3262b77f8b909b2ca49d3d2196ce5bbbbad8192533a7a9da26d3/gpt4all-j-0.2.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-15 00:27:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "marella",
    "github_project": "gpt4all-j",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "gpt4all-j"
}
        
Elapsed time: 0.31480s