guwencombo


Nameguwencombo JSON
Version 1.5.3 PyPI version JSON
download
home_pagehttps://github.com/KoichiYasuoka/GuwenCOMBO
SummaryTokenizer POS-tagger and Dependency-parser for Classical Chinese
upload_time2023-09-22 10:41:13
maintainer
docs_urlNone
authorKoichi Yasuoka
requires_python>=3.6
licenseGPL
keywords nlp chinese
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Current PyPI packages](https://badge.fury.io/py/guwencombo.svg)](https://pypi.org/project/guwencombo/)

# GuwenCOMBO

Tokenizer, POS-Tagger, and Dependency-Parser for Classical Chinese Texts (漢文/文言文), working with [COMBO-pytorch](https://gitlab.clarin-pl.eu/syntactic-tools/combo).

## Basic usage

```py
>>> import guwencombo
>>> lzh=guwencombo.load()
>>> s=lzh("不入虎穴不得虎子")
>>> print(s)
# text = 不入虎穴不得虎子
1	不	不	ADV	v,副詞,否定,無界	Polarity=Neg	2	advmod	_	Gloss=not|SpaceAfter=No
2	入	入	VERB	v,動詞,行為,移動	_	0	root	_	Gloss=enter|SpaceAfter=No
3	虎	虎	NOUN	n,名詞,主体,動物	_	4	nmod	_	Gloss=tiger|SpaceAfter=No
4	穴	穴	NOUN	n,名詞,固定物,地形	Case=Loc	2	obj	_	Gloss=cave|SpaceAfter=No
5	不	不	ADV	v,副詞,否定,無界	Polarity=Neg	6	advmod	_	Gloss=not|SpaceAfter=No
6	得	得	VERB	v,動詞,行為,得失	_	2	parataxis	_	Gloss=get|SpaceAfter=No
7	虎	虎	NOUN	n,名詞,主体,動物	_	8	nmod	_	Gloss=tiger|SpaceAfter=No
8	子	子	NOUN	n,名詞,人,関係	_	6	obj	_	Gloss=child|SpaceAfter=No

>>> t=s[1]
>>> print(t.id,t.form,t.lemma,t.upos,t.xpos,t.feats,t.head.id,t.deprel,t.deps,t.misc)
1 不 不 ADV v,副詞,否定,無界 Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No

>>> print(s.to_tree())
不 <════╗   advmod
入 ═══╗═╝═╗ root
虎 <╗ ║   ║ nmod
穴 ═╝<╝   ║ obj
不 <════╗ ║ advmod
得 ═══╗═╝<╝ parataxis
虎 <╗ ║     nmod
子 ═╝<╝     obj

>>> f=open("trial.svg","w")
>>> f.write(s.to_svg())
>>> f.close()
```
![trial.svg](https://raw.githubusercontent.com/KoichiYasuoka/GuwenCOMBO/main/trial.png)
`guwencombo.load()` has two options `guwencombo.load(BERT="guwenbert-base",Danku=False)`. With the option `BERT="guwenbert-large"` the pipeline utilizes [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). With the option `Danku=True` the pipeline tries to segment sentences automatically. `to_tree()` and `to_svg()` are borrowed from those of [UD-Kanbun](https://github.com/KoichiYasuoka/UD-Kanbun).

## Kundoku usage

```py
>>> import guwencombo
>>> lzh=guwencombo.load()
>>> s=lzh("不入虎穴不得虎子")
>>> t=guwencombo.translate(s)
>>> print(t)
# text = 虎の穴に入らずして虎の子を得ず
1	虎	虎	NOUN	n,名詞,主体,動物	_	3	nmod	_	Gloss=tiger|SpaceAfter=No
2	の	_	ADP	_	_	1	case	_	SpaceAfter=No
3	穴	穴	NOUN	n,名詞,固定物,地形	Case=Loc	5	obj	_	Gloss=cave|SpaceAfter=No
4	に	_	ADP	_	_	3	case	_	SpaceAfter=No
5	入ら	入	VERB	v,動詞,行為,移動	_	0	root	_	Gloss=enter|SpaceAfter=No
6	ずして	不	AUX	v,副詞,否定,無界	Polarity=Neg	5	advmod	_	Gloss=not|SpaceAfter=No
7	虎	虎	NOUN	n,名詞,主体,動物	_	9	nmod	_	Gloss=tiger|SpaceAfter=No
8	の	_	ADP	_	_	7	case	_	SpaceAfter=No
9	子	子	NOUN	n,名詞,人,関係	_	11	obj	_	Gloss=child|SpaceAfter=No
10	を	_	ADP	_	_	9	case	_	SpaceAfter=No
11	得	得	VERB	v,動詞,行為,得失	_	5	parataxis	_	Gloss=get|SpaceAfter=No
12	ず	不	AUX	v,副詞,否定,無界	Polarity=Neg	11	advmod	_	Gloss=not|SpaceAfter=No

>>> print(t.sentence())
虎の穴に入らずして虎の子を得ず

>>> print(s.kaeriten())
不㆑入㆓虎穴㆒不㆑得㆓虎子㆒

>>> print(t.to_tree())
虎 ═╗<╗     nmod(体言による連体修飾語)
の <╝ ║     case(格表示)
穴 ═╗═╝<╗   obj(目的語)
に <╝   ║   case(格表示)
入 ═╗═══╝═╗ root(親)
ら  ║     ║
ず <╝     ║ advmod(連用修飾語)
し        ║
て        ║
虎 ═╗<╗   ║ nmod(体言による連体修飾語)
の <╝ ║   ║ case(格表示)
子 ═╗═╝<╗ ║ obj(目的語)
を <╝   ║ ║ case(格表示)
得 ═╗═══╝<╝ parataxis(隣接表現)
ず <╝       advmod(連用修飾語)
```

`translate()` and `reorder()` are borrowed from those of [UD-Kundoku](https://github.com/KoichiYasuoka/UD-Kundoku).

## Installation for Linux

```sh
pip3 install guwencombo
```

## Installation for Cygwin64

Make sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-cffi` `gcc-g++` `mingw64-x86_64-gcc-g++` `gcc-fortran` `git` `curl` `make` `cmake` `libopenblas` `liblapack-devel` `libhdf5-devel` `libfreetype-devel` `libuv-devel` packages, and then:
```sh
curl -L https://raw.githubusercontent.com/KoichiYasuoka/UniDic-COMBO/master/cygwin64.sh | sh
pip3.7 install guwencombo
```

## Installation for macOS

```sh
g++ --version
pip3 install guwencombo --user
python3 -m spacy download en_core_web_sm --user
```

If you fail to install [Jsonnet](https://github.com/google/jsonnet), try below before installing GuwenCOMBO:

```sh
( echo '#! /bin/sh' ; echo 'exec gcc `echo $* | sed "s/-arch [^ ]*//g"`' ) > /tmp/clang
chmod 755 /tmp/clang
env PATH="/tmp:$PATH" pip3 install jsonnet --user
```

If you fail to install [fugashi](https://github.com/polm/fugashi), try to install [MeCab](https://github.com/taku910/mecab) before installing GuwenCOMBO:

```sh
cd /tmp
git clone --depth=1 https://github.com/taku910/mecab
cd mecab/mecab
./configure --with-charset=UTF8
make && sudo make install
```

## Reference

* 安岡孝一: [TransformersのBERTは共通テスト『国語』を係り受け解析する夢を見るか](http://hdl.handle.net/2433/261872), 東洋学へのコンピュータ利用, 第33回研究セミナー (2021年3月5日), pp.3-34.




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/KoichiYasuoka/GuwenCOMBO",
    "name": "guwencombo",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "NLP Chinese",
    "author": "Koichi Yasuoka",
    "author_email": "yasuoka@kanji.zinbun.kyoto-u.ac.jp",
    "download_url": "",
    "platform": null,
    "description": "[![Current PyPI packages](https://badge.fury.io/py/guwencombo.svg)](https://pypi.org/project/guwencombo/)\n\n# GuwenCOMBO\n\nTokenizer, POS-Tagger, and Dependency-Parser for Classical Chinese Texts (\u6f22\u6587/\u6587\u8a00\u6587), working with [COMBO-pytorch](https://gitlab.clarin-pl.eu/syntactic-tools/combo).\n\n## Basic usage\n\n```py\n>>> import guwencombo\n>>> lzh=guwencombo.load()\n>>> s=lzh(\"\u4e0d\u5165\u864e\u7a74\u4e0d\u5f97\u864e\u5b50\")\n>>> print(s)\n# text = \u4e0d\u5165\u864e\u7a74\u4e0d\u5f97\u864e\u5b50\n1\t\u4e0d\t\u4e0d\tADV\tv,\u526f\u8a5e,\u5426\u5b9a,\u7121\u754c\tPolarity=Neg\t2\tadvmod\t_\tGloss=not|SpaceAfter=No\n2\t\u5165\t\u5165\tVERB\tv,\u52d5\u8a5e,\u884c\u70ba,\u79fb\u52d5\t_\t0\troot\t_\tGloss=enter|SpaceAfter=No\n3\t\u864e\t\u864e\tNOUN\tn,\u540d\u8a5e,\u4e3b\u4f53,\u52d5\u7269\t_\t4\tnmod\t_\tGloss=tiger|SpaceAfter=No\n4\t\u7a74\t\u7a74\tNOUN\tn,\u540d\u8a5e,\u56fa\u5b9a\u7269,\u5730\u5f62\tCase=Loc\t2\tobj\t_\tGloss=cave|SpaceAfter=No\n5\t\u4e0d\t\u4e0d\tADV\tv,\u526f\u8a5e,\u5426\u5b9a,\u7121\u754c\tPolarity=Neg\t6\tadvmod\t_\tGloss=not|SpaceAfter=No\n6\t\u5f97\t\u5f97\tVERB\tv,\u52d5\u8a5e,\u884c\u70ba,\u5f97\u5931\t_\t2\tparataxis\t_\tGloss=get|SpaceAfter=No\n7\t\u864e\t\u864e\tNOUN\tn,\u540d\u8a5e,\u4e3b\u4f53,\u52d5\u7269\t_\t8\tnmod\t_\tGloss=tiger|SpaceAfter=No\n8\t\u5b50\t\u5b50\tNOUN\tn,\u540d\u8a5e,\u4eba,\u95a2\u4fc2\t_\t6\tobj\t_\tGloss=child|SpaceAfter=No\n\n>>> t=s[1]\n>>> print(t.id,t.form,t.lemma,t.upos,t.xpos,t.feats,t.head.id,t.deprel,t.deps,t.misc)\n1 \u4e0d \u4e0d ADV v,\u526f\u8a5e,\u5426\u5b9a,\u7121\u754c Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No\n\n>>> print(s.to_tree())\n\u4e0d <\u2550\u2550\u2550\u2550\u2557   advmod\n\u5165 \u2550\u2550\u2550\u2557\u2550\u255d\u2550\u2557 root\n\u864e <\u2557 \u2551   \u2551 nmod\n\u7a74 \u2550\u255d<\u255d   \u2551 obj\n\u4e0d <\u2550\u2550\u2550\u2550\u2557 \u2551 advmod\n\u5f97 \u2550\u2550\u2550\u2557\u2550\u255d<\u255d parataxis\n\u864e <\u2557 \u2551     nmod\n\u5b50 \u2550\u255d<\u255d     obj\n\n>>> f=open(\"trial.svg\",\"w\")\n>>> f.write(s.to_svg())\n>>> f.close()\n```\n![trial.svg](https://raw.githubusercontent.com/KoichiYasuoka/GuwenCOMBO/main/trial.png)\n`guwencombo.load()` has two options `guwencombo.load(BERT=\"guwenbert-base\",Danku=False)`. With the option `BERT=\"guwenbert-large\"` the pipeline utilizes [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). With the option `Danku=True` the pipeline tries to segment sentences automatically. `to_tree()` and `to_svg()` are borrowed from those of [UD-Kanbun](https://github.com/KoichiYasuoka/UD-Kanbun).\n\n## Kundoku usage\n\n```py\n>>> import guwencombo\n>>> lzh=guwencombo.load()\n>>> s=lzh(\"\u4e0d\u5165\u864e\u7a74\u4e0d\u5f97\u864e\u5b50\")\n>>> t=guwencombo.translate(s)\n>>> print(t)\n# text = \u864e\u306e\u7a74\u306b\u5165\u3089\u305a\u3057\u3066\u864e\u306e\u5b50\u3092\u5f97\u305a\n1\t\u864e\t\u864e\tNOUN\tn,\u540d\u8a5e,\u4e3b\u4f53,\u52d5\u7269\t_\t3\tnmod\t_\tGloss=tiger|SpaceAfter=No\n2\t\u306e\t_\tADP\t_\t_\t1\tcase\t_\tSpaceAfter=No\n3\t\u7a74\t\u7a74\tNOUN\tn,\u540d\u8a5e,\u56fa\u5b9a\u7269,\u5730\u5f62\tCase=Loc\t5\tobj\t_\tGloss=cave|SpaceAfter=No\n4\t\u306b\t_\tADP\t_\t_\t3\tcase\t_\tSpaceAfter=No\n5\t\u5165\u3089\t\u5165\tVERB\tv,\u52d5\u8a5e,\u884c\u70ba,\u79fb\u52d5\t_\t0\troot\t_\tGloss=enter|SpaceAfter=No\n6\t\u305a\u3057\u3066\t\u4e0d\tAUX\tv,\u526f\u8a5e,\u5426\u5b9a,\u7121\u754c\tPolarity=Neg\t5\tadvmod\t_\tGloss=not|SpaceAfter=No\n7\t\u864e\t\u864e\tNOUN\tn,\u540d\u8a5e,\u4e3b\u4f53,\u52d5\u7269\t_\t9\tnmod\t_\tGloss=tiger|SpaceAfter=No\n8\t\u306e\t_\tADP\t_\t_\t7\tcase\t_\tSpaceAfter=No\n9\t\u5b50\t\u5b50\tNOUN\tn,\u540d\u8a5e,\u4eba,\u95a2\u4fc2\t_\t11\tobj\t_\tGloss=child|SpaceAfter=No\n10\t\u3092\t_\tADP\t_\t_\t9\tcase\t_\tSpaceAfter=No\n11\t\u5f97\t\u5f97\tVERB\tv,\u52d5\u8a5e,\u884c\u70ba,\u5f97\u5931\t_\t5\tparataxis\t_\tGloss=get|SpaceAfter=No\n12\t\u305a\t\u4e0d\tAUX\tv,\u526f\u8a5e,\u5426\u5b9a,\u7121\u754c\tPolarity=Neg\t11\tadvmod\t_\tGloss=not|SpaceAfter=No\n\n>>> print(t.sentence())\n\u864e\u306e\u7a74\u306b\u5165\u3089\u305a\u3057\u3066\u864e\u306e\u5b50\u3092\u5f97\u305a\n\n>>> print(s.kaeriten())\n\u4e0d\u3191\u5165\u3193\u864e\u7a74\u3192\u4e0d\u3191\u5f97\u3193\u864e\u5b50\u3192\n\n>>> print(t.to_tree())\n\u864e \u2550\u2557<\u2557     nmod(\u4f53\u8a00\u306b\u3088\u308b\u9023\u4f53\u4fee\u98fe\u8a9e)\n\u306e <\u255d \u2551     case(\u683c\u8868\u793a)\n\u7a74 \u2550\u2557\u2550\u255d<\u2557   obj(\u76ee\u7684\u8a9e)\n\u306b <\u255d   \u2551   case(\u683c\u8868\u793a)\n\u5165 \u2550\u2557\u2550\u2550\u2550\u255d\u2550\u2557 root(\u89aa)\n\u3089  \u2551     \u2551\n\u305a <\u255d     \u2551 advmod(\u9023\u7528\u4fee\u98fe\u8a9e)\n\u3057        \u2551\n\u3066        \u2551\n\u864e \u2550\u2557<\u2557   \u2551 nmod(\u4f53\u8a00\u306b\u3088\u308b\u9023\u4f53\u4fee\u98fe\u8a9e)\n\u306e <\u255d \u2551   \u2551 case(\u683c\u8868\u793a)\n\u5b50 \u2550\u2557\u2550\u255d<\u2557 \u2551 obj(\u76ee\u7684\u8a9e)\n\u3092 <\u255d   \u2551 \u2551 case(\u683c\u8868\u793a)\n\u5f97 \u2550\u2557\u2550\u2550\u2550\u255d<\u255d parataxis(\u96a3\u63a5\u8868\u73fe)\n\u305a <\u255d       advmod(\u9023\u7528\u4fee\u98fe\u8a9e)\n```\n\n`translate()` and `reorder()` are borrowed from those of [UD-Kundoku](https://github.com/KoichiYasuoka/UD-Kundoku).\n\n## Installation for Linux\n\n```sh\npip3 install guwencombo\n```\n\n## Installation for Cygwin64\n\nMake sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-cffi` `gcc-g++` `mingw64-x86_64-gcc-g++` `gcc-fortran` `git` `curl` `make` `cmake` `libopenblas` `liblapack-devel` `libhdf5-devel` `libfreetype-devel` `libuv-devel` packages, and then:\n```sh\ncurl -L https://raw.githubusercontent.com/KoichiYasuoka/UniDic-COMBO/master/cygwin64.sh | sh\npip3.7 install guwencombo\n```\n\n## Installation for macOS\n\n```sh\ng++ --version\npip3 install guwencombo --user\npython3 -m spacy download en_core_web_sm --user\n```\n\nIf you fail to install [Jsonnet](https://github.com/google/jsonnet), try below before installing GuwenCOMBO:\n\n```sh\n( echo '#! /bin/sh' ; echo 'exec gcc `echo $* | sed \"s/-arch [^ ]*//g\"`' ) > /tmp/clang\nchmod 755 /tmp/clang\nenv PATH=\"/tmp:$PATH\" pip3 install jsonnet --user\n```\n\nIf you fail to install [fugashi](https://github.com/polm/fugashi), try to install [MeCab](https://github.com/taku910/mecab) before installing GuwenCOMBO:\n\n```sh\ncd /tmp\ngit clone --depth=1 https://github.com/taku910/mecab\ncd mecab/mecab\n./configure --with-charset=UTF8\nmake && sudo make install\n```\n\n## Reference\n\n* \u5b89\u5ca1\u5b5d\u4e00: [Transformers\u306eBERT\u306f\u5171\u901a\u30c6\u30b9\u30c8\u300e\u56fd\u8a9e\u300f\u3092\u4fc2\u308a\u53d7\u3051\u89e3\u6790\u3059\u308b\u5922\u3092\u898b\u308b\u304b](http://hdl.handle.net/2433/261872), \u6771\u6d0b\u5b66\u3078\u306e\u30b3\u30f3\u30d4\u30e5\u30fc\u30bf\u5229\u7528, \u7b2c33\u56de\u7814\u7a76\u30bb\u30df\u30ca\u30fc (2021\u5e743\u67085\u65e5), pp.3-34.\n\n\n\n",
    "bugtrack_url": null,
    "license": "GPL",
    "summary": "Tokenizer POS-tagger and Dependency-parser for Classical Chinese",
    "version": "1.5.3",
    "project_urls": {
        "COMBO-pytorch": "https://gitlab.clarin-pl.eu/syntactic-tools/combo",
        "Homepage": "https://github.com/KoichiYasuoka/GuwenCOMBO",
        "Source": "https://github.com/KoichiYasuoka/GuwenCOMBO",
        "Tracker": "https://github.com/KoichiYasuoka/GuwenCOMBO/issues"
    },
    "split_keywords": [
        "nlp",
        "chinese"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0f47de073a8ee4e452b5a52a57b5bd33bbf812d33f4d443c5ddedc3c2d5e8b22",
                "md5": "f97d5e5a5ba8053b92838843b93fcf68",
                "sha256": "6b5a812e5347d2be97e2580efe1fee0402ef31f52382f9dd47f9f6650fce7b6c"
            },
            "downloads": -1,
            "filename": "guwencombo-1.5.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f97d5e5a5ba8053b92838843b93fcf68",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 17714,
            "upload_time": "2023-09-22T10:41:13",
            "upload_time_iso_8601": "2023-09-22T10:41:13.973231Z",
            "url": "https://files.pythonhosted.org/packages/0f/47/de073a8ee4e452b5a52a57b5bd33bbf812d33f4d443c5ddedc3c2d5e8b22/guwencombo-1.5.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-22 10:41:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "KoichiYasuoka",
    "github_project": "GuwenCOMBO",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "guwencombo"
}
        
Elapsed time: 0.74280s