Raw data
{
"_id": null,
"home_page": "https://github.com/soltoggio/CT-graph",
"name": "gym-CTgraph",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Deep reinforcement learning, dynamic rewards, continual learning, adaptation, partially observable Markov decision problems, POMDP, gym environment",
"author": "Andrea Soltoggio, Eseoghene Benjamin, Christos Peridis, Pawel Ladosz, Jeffery Dick",
"author_email": "a.soltoggio@lboro.ac.uk",
"download_url": null,
"platform": null,
"description": "",
"bugtrack_url": null,
"license": "GPL",
"summary": "This is the implementation for the configurable tree graph (CT-graph)",
"version": "1.0",
"project_urls": {
"Homepage": "https://github.com/soltoggio/CT-graph",
"Repository": "https://github.com/soltoggio/CT-graph"
},
"split_keywords": [
"deep reinforcement learning",
" dynamic rewards",
" continual learning",
" adaptation",
" partially observable markov decision problems",
" pomdp",
" gym environment"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e30b5f61788869dde52d58c21c4fe5395368249f89931da8abff11a059231a53",
"md5": "be6d1ee5536bc2a18f321b48ea74cb13",
"sha256": "d6081fefe7ecda7697e07b4070844a1bdb01a739fe5263cd29f4bed6e730c6e5"
},
"downloads": -1,
"filename": "gym_CTgraph-1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "be6d1ee5536bc2a18f321b48ea74cb13",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 21942,
"upload_time": "2025-01-26T14:29:33",
"upload_time_iso_8601": "2025-01-26T14:29:33.550851Z",
"url": "https://files.pythonhosted.org/packages/e3/0b/5f61788869dde52d58c21c4fe5395368249f89931da8abff11a059231a53/gym_CTgraph-1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-26 14:29:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "soltoggio",
"github_project": "CT-graph",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "gym-ctgraph"
}