gym-xarm


Namegym-xarm JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA gym environment for xArm
upload_time2024-05-03 13:50:22
maintainerNone
docs_urlNone
authorRémi Cadène
requires_python<4.0,>=3.10
licenseApache-2.0
keywords robotics deep reinforcement learning xarm environment gym gymnasium mujoco
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # gym-xarm

A gym environment for xArm

<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="50%" alt="TDMPC policy on xArm env"/></td>


## Installation

Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
```bash
conda create -y -n xarm python=3.10 && conda activate xarm
```

Install gym-xarm:
```bash
pip install gym-xarm
```


## Quickstart

```python
# example.py
import gymnasium as gym
import gym_xarm

env = gym.make("gym_xarm/XarmLift-v0", render_mode="human")
observation, info = env.reset()

for _ in range(1000):
    action = env.action_space.sample()
    observation, reward, terminated, truncated, info = env.step(action)
    image = env.render()

    if terminated or truncated:
        observation, info = env.reset()

env.close()
```

To use this [example](./example.py) with `render_mode="human"`, you should set the environment variable `export MUJOCO_GL=glfw` or simply run
```bash
MUJOCO_GL=glfw python example.py
```

## Description for `Lift` task

The goal of the agent is to lift the block above a height threshold. The agent is an xArm robot arm and the block is a cube.

### Action Space

The action space is continuous and consists of four values [x, y, z, w]:
- [x, y, z] represent the position of the end effector
- [w] represents the gripper control

### Observation Space

Observation space is dependent on the value set to `obs_type`:
- `"state"`: observations contain agent and object state vectors only (no rendering)
- `"pixels"`: observations contains rendered image only (no state vectors)
- `"pixels_agent_pos"`: contains rendered image and agent state vector


## Contribute

Instead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.

Install the project with dev dependencies:
```bash
poetry install --all-extras
```

### Follow our style

```bash
# install pre-commit hooks
pre-commit install

# apply style and linter checks on staged files
pre-commit
```


## Acknowledgment

gym-xarm is adapted from [FOWM](https://www.yunhaifeng.com/FOWM/) and is based on work by [Nicklas Hansen](https://nicklashansen.github.io/), [Yanjie Ze](https://yanjieze.com/), [Rishabh Jangir](https://jangirrishabh.github.io/), [Mohit Jain](https://natsu6767.github.io/), and [Sambaran Ghosal](https://github.com/SambaranRepo) as part of the following publications:
* [Self-Supervised Policy Adaptation During Deployment](https://arxiv.org/abs/2007.04309)
* [Generalization in Reinforcement Learning by Soft Data Augmentation](https://arxiv.org/abs/2011.13389)
* [Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation](https://arxiv.org/abs/2107.00644)
* [Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation](https://arxiv.org/abs/2201.07779)
* [Visual Reinforcement Learning with Self-Supervised 3D Representations](https://arxiv.org/abs/2210.07241)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gym-xarm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "robotics, deep, reinforcement, learning, xarm, environment, gym, gymnasium, mujoco",
    "author": "R\u00e9mi Cad\u00e8ne",
    "author_email": "re.cadene@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/1a/14/c7ea1ce2b11ee4c15f065cb86bb0a6bf7737aa40996e81c60c6ea470e7c7/gym_xarm-0.1.0.tar.gz",
    "platform": null,
    "description": "# gym-xarm\n\nA gym environment for xArm\n\n<td><img src=\"http://remicadene.com/assets/gif/simxarm_tdmpc.gif\" width=\"50%\" alt=\"TDMPC policy on xArm env\"/></td>\n\n\n## Installation\n\nCreate a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):\n```bash\nconda create -y -n xarm python=3.10 && conda activate xarm\n```\n\nInstall gym-xarm:\n```bash\npip install gym-xarm\n```\n\n\n## Quickstart\n\n```python\n# example.py\nimport gymnasium as gym\nimport gym_xarm\n\nenv = gym.make(\"gym_xarm/XarmLift-v0\", render_mode=\"human\")\nobservation, info = env.reset()\n\nfor _ in range(1000):\n    action = env.action_space.sample()\n    observation, reward, terminated, truncated, info = env.step(action)\n    image = env.render()\n\n    if terminated or truncated:\n        observation, info = env.reset()\n\nenv.close()\n```\n\nTo use this [example](./example.py) with `render_mode=\"human\"`, you should set the environment variable `export MUJOCO_GL=glfw` or simply run\n```bash\nMUJOCO_GL=glfw python example.py\n```\n\n## Description for `Lift` task\n\nThe goal of the agent is to lift the block above a height threshold. The agent is an xArm robot arm and the block is a cube.\n\n### Action Space\n\nThe action space is continuous and consists of four values [x, y, z, w]:\n- [x, y, z] represent the position of the end effector\n- [w] represents the gripper control\n\n### Observation Space\n\nObservation space is dependent on the value set to `obs_type`:\n- `\"state\"`: observations contain agent and object state vectors only (no rendering)\n- `\"pixels\"`: observations contains rendered image only (no state vectors)\n- `\"pixels_agent_pos\"`: contains rendered image and agent state vector\n\n\n## Contribute\n\nInstead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.\nIf you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.\n\nInstall the project with dev dependencies:\n```bash\npoetry install --all-extras\n```\n\n### Follow our style\n\n```bash\n# install pre-commit hooks\npre-commit install\n\n# apply style and linter checks on staged files\npre-commit\n```\n\n\n## Acknowledgment\n\ngym-xarm is adapted from [FOWM](https://www.yunhaifeng.com/FOWM/) and is based on work by [Nicklas Hansen](https://nicklashansen.github.io/), [Yanjie Ze](https://yanjieze.com/), [Rishabh Jangir](https://jangirrishabh.github.io/), [Mohit Jain](https://natsu6767.github.io/), and [Sambaran Ghosal](https://github.com/SambaranRepo) as part of the following publications:\n* [Self-Supervised Policy Adaptation During Deployment](https://arxiv.org/abs/2007.04309)\n* [Generalization in Reinforcement Learning by Soft Data Augmentation](https://arxiv.org/abs/2011.13389)\n* [Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation](https://arxiv.org/abs/2107.00644)\n* [Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation](https://arxiv.org/abs/2201.07779)\n* [Visual Reinforcement Learning with Self-Supervised 3D Representations](https://arxiv.org/abs/2210.07241)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A gym environment for xArm",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "robotics",
        " deep",
        " reinforcement",
        " learning",
        " xarm",
        " environment",
        " gym",
        " gymnasium",
        " mujoco"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8b333b467191346138c794f21e227572a4df77c112e74566088566a0410bfada",
                "md5": "e1237175703714635e25d3591ce5537f",
                "sha256": "d10ac19a59d302201a9b8bd913530211b1058467b787ad91a657907e40cdbc13"
            },
            "downloads": -1,
            "filename": "gym_xarm-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e1237175703714635e25d3591ce5537f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 2256451,
            "upload_time": "2024-05-03T13:50:19",
            "upload_time_iso_8601": "2024-05-03T13:50:19.889779Z",
            "url": "https://files.pythonhosted.org/packages/8b/33/3b467191346138c794f21e227572a4df77c112e74566088566a0410bfada/gym_xarm-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a14c7ea1ce2b11ee4c15f065cb86bb0a6bf7737aa40996e81c60c6ea470e7c7",
                "md5": "5c2c3b91e17e380d84efeca8f85ed8c7",
                "sha256": "fc05f9d02af1f0205275311669dc191ce431be484e221a96401eb544764eb986"
            },
            "downloads": -1,
            "filename": "gym_xarm-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5c2c3b91e17e380d84efeca8f85ed8c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 2246989,
            "upload_time": "2024-05-03T13:50:22",
            "upload_time_iso_8601": "2024-05-03T13:50:22.423762Z",
            "url": "https://files.pythonhosted.org/packages/1a/14/c7ea1ce2b11ee4c15f065cb86bb0a6bf7737aa40996e81c60c6ea470e7c7/gym_xarm-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-03 13:50:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gym-xarm"
}
        
Elapsed time: 0.69386s