Name | hawkins-rag JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | A Python package for building RAG systems with HawkinsDB and multiple data source integrations |
upload_time | 2024-12-25 17:20:49 |
maintainer | None |
docs_url | None |
author | HawkinsRAG Team |
requires_python | >=3.11 |
license | MIT |
keywords |
ai
embeddings
hawkinsdb
llm
rag
search
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# HawkinsRAG
A Python package for building Retrieval-Augmented Generation (RAG) systems with HawkinsDB and multiple data source integrations.
## Features
- Multiple data source support through specialized loaders
- Efficient text chunking and embedding
- Seamless integration with HawkinsDB
- Flexible configuration options
- Comprehensive error handling
## Installation
```bash
pip install hawkins-rag
```
## Quick Start
```python
from hawkins_rag import HawkinsRAG
# Initialize RAG system
rag = HawkinsRAG()
# Load document
result = rag.load_document("document.txt", source_type="text")
# Query content
response = rag.query("What is this document about?")
print(response)
```
## Supported Data Sources
HawkinsRAG supports multiple data sources through specialized loaders:
- Text files (txt, pdf, docx)
- Web content (YouTube, webpages)
- Structured data (JSON, CSV)
- APIs (GitHub, Gmail, Slack)
- Databases (MySQL, PostgreSQL)
- And many more!
## Configuration
```python
config = {
"storage_type": "sqlite", # or "postgres"
"db_path": "hawkins_rag.db",
"chunk_size": 500,
"loader_config": {
"youtube": {
"api_key": "YOUR_YOUTUBE_API_KEY"
},
"github": {
"token": "YOUR_GITHUB_TOKEN"
}
}
}
rag = HawkinsRAG(config=config)
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Documentation
For detailed documentation, visit [HawkinsRAG Documentation](https://github.com/harishsg993010/HawkinsRAG/docs).
Raw data
{
"_id": null,
"home_page": null,
"name": "hawkins-rag",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "ai, embeddings, hawkinsdb, llm, rag, search",
"author": "HawkinsRAG Team",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# HawkinsRAG\n\nA Python package for building Retrieval-Augmented Generation (RAG) systems with HawkinsDB and multiple data source integrations.\n\n## Features\n- Multiple data source support through specialized loaders\n- Efficient text chunking and embedding\n- Seamless integration with HawkinsDB\n- Flexible configuration options\n- Comprehensive error handling\n\n## Installation\n\n```bash\npip install hawkins-rag\n```\n\n## Quick Start\n\n```python\nfrom hawkins_rag import HawkinsRAG\n\n# Initialize RAG system\nrag = HawkinsRAG()\n\n# Load document\nresult = rag.load_document(\"document.txt\", source_type=\"text\")\n\n# Query content\nresponse = rag.query(\"What is this document about?\")\nprint(response)\n```\n\n## Supported Data Sources\n\nHawkinsRAG supports multiple data sources through specialized loaders:\n\n- Text files (txt, pdf, docx)\n- Web content (YouTube, webpages)\n- Structured data (JSON, CSV)\n- APIs (GitHub, Gmail, Slack)\n- Databases (MySQL, PostgreSQL)\n- And many more!\n\n## Configuration\n\n```python\nconfig = {\n \"storage_type\": \"sqlite\", # or \"postgres\"\n \"db_path\": \"hawkins_rag.db\",\n \"chunk_size\": 500,\n \"loader_config\": {\n \"youtube\": {\n \"api_key\": \"YOUR_YOUTUBE_API_KEY\"\n },\n \"github\": {\n \"token\": \"YOUR_GITHUB_TOKEN\"\n }\n }\n}\n\nrag = HawkinsRAG(config=config)\n```\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Documentation\n\nFor detailed documentation, visit [HawkinsRAG Documentation](https://github.com/harishsg993010/HawkinsRAG/docs).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package for building RAG systems with HawkinsDB and multiple data source integrations",
"version": "0.1.0",
"project_urls": {
"Documentation": "https://github.com/harishsg993010/HawkinsRAG/docs",
"Source": "https://github.com/harishsg993010/HawkinsRAG"
},
"split_keywords": [
"ai",
" embeddings",
" hawkinsdb",
" llm",
" rag",
" search"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "52d845cf4acab26131eff872e8bb5bf9fb5c9c3429e5dd65b0d7545eb056c9f5",
"md5": "59f17e3877b281cf523f6eaa72eba164",
"sha256": "54ad186f4823d075aa65d30c3c61a75d28afc50237fa0203d9a3bb4162bbdff8"
},
"downloads": -1,
"filename": "hawkins_rag-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "59f17e3877b281cf523f6eaa72eba164",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 64573,
"upload_time": "2024-12-25T17:20:49",
"upload_time_iso_8601": "2024-12-25T17:20:49.594639Z",
"url": "https://files.pythonhosted.org/packages/52/d8/45cf4acab26131eff872e8bb5bf9fb5c9c3429e5dd65b0d7545eb056c9f5/hawkins_rag-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-25 17:20:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "harishsg993010",
"github_project": "HawkinsRAG",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "hawkins-rag"
}