hep-ml


Namehep-ml JSON
Version 0.7.3 PyPI version JSON
download
home_pagehttps://github.com/arogozhnikov/hep_ml
SummaryMachine Learning for High Energy Physics
upload_time2024-10-16 21:52:19
maintainerNone
docs_urlNone
authorAlex Rogozhnikov
requires_pythonNone
licenseApache 2.0
keywords machine learning supervised learning uncorrelated methods of machine learning high energy physics particle physics
VCS
bugtrack_url
requirements numpy scipy matplotlib pandas ipython root_numpy scikit-learn theano six sphinx_rtd_theme
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # hep_ml

**hep_ml** provides specific machine learning tools for purposes of high energy physics.

<!--- [![travis status](https://travis-ci.org/arogozhnikov/hep_ml.svg?branch=master)](https://travis-ci.org/arogozhnikov/hep_ml) --->
[![Run tests](https://github.com/arogozhnikov/hep_ml/actions/workflows/run_tests.yml/badge.svg)](https://github.com/arogozhnikov/hep_ml/actions/workflows/run_tests.yml)
[![PyPI version](https://badge.fury.io/py/hep-ml.svg)](https://badge.fury.io/py/hep-ml)
[![Documentation](https://img.shields.io/badge/documentation-link-blue.svg)](https://arogozhnikov.github.io/hep_ml/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1247379.svg)](https://doi.org/10.5281/zenodo.1247379)



![hep_ml, python library for high energy physics](https://github.com/arogozhnikov/hep_ml/blob/data/data_to_download/hep_ml_image.png)


### Main features

* uniform classifiers - the classifiers with low correlation of predictions and mass (or some other variable, or even set of variables)
  * __uBoost__ optimized implementation inside
  * __UGradientBoosting__ (with different losses, specially __FlatnessLoss__ is of high interest)
* measures of uniformity (see **hep_ml.metrics**)
* advanced losses for classification, regression and ranking for __UGradientBoosting__ (see **hep_ml.losses**).  
* **hep_ml.nnet** - theano-based flexible neural networks 
* **hep_ml.reweight** - reweighting multidimensional distributions <br />
  (_multi_ here means 2, 3, 5 and more dimensions - see GBReweighter!)
* **hep_ml.splot** - minimalistic sPlot-ting 
* **hep_ml.speedup** - building models for fast classification (Bonsai BDT)
* **sklearn**-compatibility of estimators.

### Installation

Plain and simple:

```bash
pip install hep_ml
```

If you're new to python and never used `pip`, first install scikit-learn [with these instructions](http://scikit-learn.org/stable/install.html).

### Links

* [documentation](https://arogozhnikov.github.io/hep_ml/)
* [notebooks, code examples](https://github.com/arogozhnikov/hep_ml/tree/master/notebooks)
    - you may need to install `ROOT` and `root_numpy` to run those 
* [repository](https://github.com/arogozhnikov/hep_ml)
* [issue tracker](https://github.com/arogozhnikov/hep_ml/issues)

### Related projects 
Libraries you'll require to make your life easier and HEPpier.

* [IPython Notebook](http://ipython.org/notebook.html) &mdash; web-shell for python
* [scikit-learn](http://scikit-learn.org/)  &mdash; general-purpose library for machine learning in python
* [numpy](http://www.numpy.org/)  &mdash; 'MATLAB in python', vector operation in python. 
    Use it you need to perform any number crunching. 
* [theano](http://deeplearning.net/software/theano/)  &mdash; optimized vector analytical math engine in python
* [ROOT](https://root.cern.ch/)  &mdash; main data format in high energy physics 
* [root_numpy](http://rootpy.github.io/root_numpy/)  &mdash; python library to deal with ROOT files (without pain)


### License
Apache 2.0, `hep_ml` is an open-source library.

### Platforms 
Linux, Mac OS X and Windows are supported.

**hep_ml** supports both python 2 and python 3.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arogozhnikov/hep_ml",
    "name": "hep-ml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "machine learning, supervised learning, uncorrelated methods of machine learning, high energy physics, particle physics",
    "author": "Alex Rogozhnikov",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/57/a7/70928abfe68691040e8bee05ec3c8cc0c83f70cb48f12b9632cdb639f5cf/hep_ml-0.7.3.tar.gz",
    "platform": null,
    "description": "# hep_ml\n\n**hep_ml** provides specific machine learning tools for purposes of high energy physics.\n\n<!--- [![travis status](https://travis-ci.org/arogozhnikov/hep_ml.svg?branch=master)](https://travis-ci.org/arogozhnikov/hep_ml) --->\n[![Run tests](https://github.com/arogozhnikov/hep_ml/actions/workflows/run_tests.yml/badge.svg)](https://github.com/arogozhnikov/hep_ml/actions/workflows/run_tests.yml)\n[![PyPI version](https://badge.fury.io/py/hep-ml.svg)](https://badge.fury.io/py/hep-ml)\n[![Documentation](https://img.shields.io/badge/documentation-link-blue.svg)](https://arogozhnikov.github.io/hep_ml/)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1247379.svg)](https://doi.org/10.5281/zenodo.1247379)\n\n\n\n![hep_ml, python library for high energy physics](https://github.com/arogozhnikov/hep_ml/blob/data/data_to_download/hep_ml_image.png)\n\n\n### Main features\n\n* uniform classifiers - the classifiers with low correlation of predictions and mass (or some other variable, or even set of variables)\n  * __uBoost__ optimized implementation inside\n  * __UGradientBoosting__ (with different losses, specially __FlatnessLoss__ is of high interest)\n* measures of uniformity (see **hep_ml.metrics**)\n* advanced losses for classification, regression and ranking for __UGradientBoosting__ (see **hep_ml.losses**).  \n* **hep_ml.nnet** - theano-based flexible neural networks \n* **hep_ml.reweight** - reweighting multidimensional distributions <br />\n  (_multi_ here means 2, 3, 5 and more dimensions - see GBReweighter!)\n* **hep_ml.splot** - minimalistic sPlot-ting \n* **hep_ml.speedup** - building models for fast classification (Bonsai BDT)\n* **sklearn**-compatibility of estimators.\n\n### Installation\n\nPlain and simple:\n\n```bash\npip install hep_ml\n```\n\nIf you're new to python and never used `pip`, first install scikit-learn [with these instructions](http://scikit-learn.org/stable/install.html).\n\n### Links\n\n* [documentation](https://arogozhnikov.github.io/hep_ml/)\n* [notebooks, code examples](https://github.com/arogozhnikov/hep_ml/tree/master/notebooks)\n    - you may need to install `ROOT` and `root_numpy` to run those \n* [repository](https://github.com/arogozhnikov/hep_ml)\n* [issue tracker](https://github.com/arogozhnikov/hep_ml/issues)\n\n### Related projects \nLibraries you'll require to make your life easier and HEPpier.\n\n* [IPython Notebook](http://ipython.org/notebook.html) &mdash; web-shell for python\n* [scikit-learn](http://scikit-learn.org/)  &mdash; general-purpose library for machine learning in python\n* [numpy](http://www.numpy.org/)  &mdash; 'MATLAB in python', vector operation in python. \n    Use it you need to perform any number crunching. \n* [theano](http://deeplearning.net/software/theano/)  &mdash; optimized vector analytical math engine in python\n* [ROOT](https://root.cern.ch/)  &mdash; main data format in high energy physics \n* [root_numpy](http://rootpy.github.io/root_numpy/)  &mdash; python library to deal with ROOT files (without pain)\n\n\n### License\nApache 2.0, `hep_ml` is an open-source library.\n\n### Platforms \nLinux, Mac OS X and Windows are supported.\n\n**hep_ml** supports both python 2 and python 3.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Machine Learning for High Energy Physics",
    "version": "0.7.3",
    "project_urls": {
        "Homepage": "https://github.com/arogozhnikov/hep_ml"
    },
    "split_keywords": [
        "machine learning",
        " supervised learning",
        " uncorrelated methods of machine learning",
        " high energy physics",
        " particle physics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aec7a8f736b66166b3b394a2fe172ee9c3bcefb2fabd500e136df96cafcee30d",
                "md5": "6844cd0b1ab889f6a9e2e15aed8d2cbd",
                "sha256": "629a2685f92ef50e258d17f7e01be5d3f1629641d63a854ec19b20e46b357acd"
            },
            "downloads": -1,
            "filename": "hep_ml-0.7.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6844cd0b1ab889f6a9e2e15aed8d2cbd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 55301,
            "upload_time": "2024-10-16T21:52:17",
            "upload_time_iso_8601": "2024-10-16T21:52:17.788490Z",
            "url": "https://files.pythonhosted.org/packages/ae/c7/a8f736b66166b3b394a2fe172ee9c3bcefb2fabd500e136df96cafcee30d/hep_ml-0.7.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "57a770928abfe68691040e8bee05ec3c8cc0c83f70cb48f12b9632cdb639f5cf",
                "md5": "b8d0bc45a7a79c55f637343a0494abc1",
                "sha256": "606bb1d7724a71dbecc67998ea46cb304f93a17e1b777c199abb3f7f481ebc6b"
            },
            "downloads": -1,
            "filename": "hep_ml-0.7.3.tar.gz",
            "has_sig": false,
            "md5_digest": "b8d0bc45a7a79c55f637343a0494abc1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 60351,
            "upload_time": "2024-10-16T21:52:19",
            "upload_time_iso_8601": "2024-10-16T21:52:19.351716Z",
            "url": "https://files.pythonhosted.org/packages/57/a7/70928abfe68691040e8bee05ec3c8cc0c83f70cb48f12b9632cdb639f5cf/hep_ml-0.7.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-16 21:52:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arogozhnikov",
    "github_project": "hep_ml",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.9"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "0.15.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "1.4"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "0.14.0"
                ]
            ]
        },
        {
            "name": "ipython",
            "specs": [
                [
                    ">=",
                    "3.0"
                ]
            ]
        },
        {
            "name": "root_numpy",
            "specs": [
                [
                    ">=",
                    "3.3.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1"
                ]
            ]
        },
        {
            "name": "theano",
            "specs": [
                [
                    ">=",
                    "1.0.2"
                ]
            ]
        },
        {
            "name": "six",
            "specs": []
        },
        {
            "name": "sphinx_rtd_theme",
            "specs": []
        }
    ],
    "lcname": "hep-ml"
}
        
Elapsed time: 0.43476s