hepai


Namehepai JSON
Version 1.1.15 PyPI version JSON
download
home_pagehttps://github.com/zhangzhengde0225/hai
SummaryHigh energy phscis Artificial Intelligence plateform, HAI.
upload_time2024-12-21 16:14:53
maintainerNone
docs_urlNone
authorZhengde Zhang
requires_python>=3.10.0
licenseMIT
keywords
VCS
bugtrack_url
requirements damei easydict numpy opencv-python pillow tqdm wandb grpcio-tools fastapi uvicorn openai
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
[![Stars](https://img.shields.io/github/stars/zhangzhengde0225/CDNet)](
https://github.com/zhangzhengde0225/hai)
[![Open issue](https://img.shields.io/github/issues/zhangzhengde0225/CDNet)](
https://github.com/zhangzhengde0225/hai/issues)
<!-- [![Datasets](https://img.shields.io/static/v1?label=Download&message=datasets&color=green)](
https://github.com/zhangzhengde0225/CDNet/blob/master/docs/DATASETS.md)
[![Datasets](https://img.shields.io/static/v1?label=Download&message=source_code&color=orange)](
https://github.com/zhangzhengde0225/CDNet/archive/refs/heads/master.zip) -->

#### English | [简体中文](https://github.com/zhangzhengde0225/hai/blob/main/docs/readme_zh_cn.md)

# HepAI Library
This is [HepAI](https://ai.ihep.ac.cn) python library, the AI platform can accelerate scientific research in multidisciplinary scenarios, simplify model iteration and flow, and is a common infrastructure for the development of AI algorithms and applications.

The HepAI platform itself is a software system that carries AI algorithm models, provides AI computing power, connects data channels, and conducts AI training.

The HepAI framework integrates classic and state-of-the-art (SOTA) artificial intelligence algorithms in the field of high-energy physics. One can access related algorithm models, datasets, and computational resources through a unified interface, making the application of AI simple and efficient.

<details open>
<summary><b>News</b></summary>

+ [2024.05.16] v1.1.9 HepAI Client支持GPT-4o, 调用方法:
+ [2024.03.26] v1.0.21 Make LLM request like OpenAI via HepAI object.
+ [2023.10.24] v1.0.18 接入dalle文生图模型,调用方法教程见[此处](https://note.ihep.ac.cn/s/EG60U1Rtf)。
+ [2023.04.21] v1.0.7通过hepai使用GPT-3.5,[hepai_api.md](docs/hepai_api.md).
+ [2023.02.09] 基于ChatGPT的**HaiChatGPT**已上线,使用简单,无需梯子!详情查看:[HaiChatGPT](https://code.ihep.ac.cn/zdzhang/haichatgpt).
+ [2023.01.16] 华为NPU服务器上架,如有算法国产化需求,请查阅[NPU文档](docs/computing_power/npu_power_doc.md)。
+ [2022.10.20] HAI v1.0.6-Beta 第一个测试版本发布,4个算法和3个数据集
+ [2022.08.23] HAI v1.0.0
</details>

<details open>
<summary><b>Tutorials</b></summary>

[Quick Start to Using HepAI on Computing Clusters](docs/quickstart_hpc.md)

[Reconstruction and identification of atmospheric neutrinos in JUNO experiments using PointNet](https://code.ihep.ac.cn/zhangyiyu/pointnet)

</details>

<details open>
<summary><b>Algorithm Zoo</b></summary>
<a href="https://code.ihep.ac.cn/zdzhang/hai/-/blob/main/docs/model_zoo.md">
    <ul>
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=粒子物理&message=4 online, 3 TODO">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=天体物理&message=1 TODO">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=同步辐射&message=2 TODO">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=中子物理&message=0">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=通用神经网络&message=2 online, 5 TODO">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=经典机器学习&message=TODO">
    </ul>
    </a>
    
</details>

<details open>
<summary><b>Dataset Zoo</b></summary>
<a href="https://code.ihep.ac.cn/zdzhang/hai/-/blob/main/docs/datasets.md">
<ul>
<li>
    <img src="https://img.shields.io/static/v1?style=social&label=粒子物理&message=3 available, 10+ TODO">
    <li>
    <img src="https://img.shields.io/static/v1?style=social&label=CV&message=1 available">
    </a>
</details>


### Quick start
```
pip install hepai --upgrade
hai -V  # 查看版本
```

1. 命令行使用

    ```bash
    hai train <model_name>  # 训练模型, 例如: hai train particle_transformer
    hai eval <model_name>
    ```

2. python库使用

    python库统一接口:
    ```python
    import hai
    
    model = hai.hub.load('<model_name>')  # 加载模型
    config = model.config  # 获取模型配置
    config.batch_size = 32  # 修改配置
    model.trian()  # 训练模型
    model.eval()  # 评估模型
    model.infer('<data>')  # 模型推理
    hai.train('particle_transformer')
    ```

3. 部署和远程调用

    跨语言、跨平台的模型部署和远程调用

    服务端:
    ```bash
    hai start server  # 启动服务
    ```
    客户端
    ```bash
    pip install hai-client
    ```
    ```python
    import hai_client
    hai = hai_client.HAI()
    ```
    或其他支持gRPC的语言,详见[deploy](docs/deploy.md)


note

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zhangzhengde0225/hai",
    "name": "hepai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10.0",
    "maintainer_email": null,
    "keywords": null,
    "author": "Zhengde Zhang",
    "author_email": "zdzhang@ihep.ac.cn",
    "download_url": "https://files.pythonhosted.org/packages/22/08/44c08abe60fe7b38c2468a9b021fee667200256df70d0af56723b33eb29a/hepai-1.1.15.tar.gz",
    "platform": null,
    "description": "\n[![Stars](https://img.shields.io/github/stars/zhangzhengde0225/CDNet)](\nhttps://github.com/zhangzhengde0225/hai)\n[![Open issue](https://img.shields.io/github/issues/zhangzhengde0225/CDNet)](\nhttps://github.com/zhangzhengde0225/hai/issues)\n<!-- [![Datasets](https://img.shields.io/static/v1?label=Download&message=datasets&color=green)](\nhttps://github.com/zhangzhengde0225/CDNet/blob/master/docs/DATASETS.md)\n[![Datasets](https://img.shields.io/static/v1?label=Download&message=source_code&color=orange)](\nhttps://github.com/zhangzhengde0225/CDNet/archive/refs/heads/master.zip) -->\n\n#### English | [\u7b80\u4f53\u4e2d\u6587](https://github.com/zhangzhengde0225/hai/blob/main/docs/readme_zh_cn.md)\n\n# HepAI Library\nThis is [HepAI](https://ai.ihep.ac.cn) python library, the AI platform can accelerate scientific research in multidisciplinary scenarios, simplify model iteration and flow, and is a common infrastructure for the development of AI algorithms and applications.\n\nThe HepAI platform itself is a software system that carries AI algorithm models, provides AI computing power, connects data channels, and conducts AI training.\n\nThe HepAI framework integrates classic and state-of-the-art (SOTA) artificial intelligence algorithms in the field of high-energy physics. One can access related algorithm models, datasets, and computational resources through a unified interface, making the application of AI simple and efficient.\n\n<details open>\n<summary><b>News</b></summary>\n\n+ [2024.05.16] v1.1.9 HepAI Client\u652f\u6301GPT-4o, \u8c03\u7528\u65b9\u6cd5:\n+ [2024.03.26] v1.0.21 Make LLM request like OpenAI via HepAI object.\n+ [2023.10.24] v1.0.18 \u63a5\u5165dalle\u6587\u751f\u56fe\u6a21\u578b\uff0c\u8c03\u7528\u65b9\u6cd5\u6559\u7a0b\u89c1[\u6b64\u5904](https://note.ihep.ac.cn/s/EG60U1Rtf)\u3002\n+ [2023.04.21] v1.0.7\u901a\u8fc7hepai\u4f7f\u7528GPT-3.5\uff0c[hepai_api.md](docs/hepai_api.md).\n+ [2023.02.09] \u57fa\u4e8eChatGPT\u7684**HaiChatGPT**\u5df2\u4e0a\u7ebf\uff0c\u4f7f\u7528\u7b80\u5355\uff0c\u65e0\u9700\u68af\u5b50\uff01\u8be6\u60c5\u67e5\u770b\uff1a[HaiChatGPT](https://code.ihep.ac.cn/zdzhang/haichatgpt).\n+ [2023.01.16] \u534e\u4e3aNPU\u670d\u52a1\u5668\u4e0a\u67b6\uff0c\u5982\u6709\u7b97\u6cd5\u56fd\u4ea7\u5316\u9700\u6c42\uff0c\u8bf7\u67e5\u9605[NPU\u6587\u6863](docs/computing_power/npu_power_doc.md)\u3002\n+ [2022.10.20] HAI v1.0.6-Beta \u7b2c\u4e00\u4e2a\u6d4b\u8bd5\u7248\u672c\u53d1\u5e03\uff0c4\u4e2a\u7b97\u6cd5\u548c3\u4e2a\u6570\u636e\u96c6\n+ [2022.08.23] HAI v1.0.0\n</details>\n\n<details open>\n<summary><b>Tutorials</b></summary>\n\n[Quick Start to Using HepAI on Computing Clusters](docs/quickstart_hpc.md)\n\n[Reconstruction and identification of atmospheric neutrinos in JUNO experiments using PointNet](https://code.ihep.ac.cn/zhangyiyu/pointnet)\n\n</details>\n\n<details open>\n<summary><b>Algorithm Zoo</b></summary>\n<a href=\"https://code.ihep.ac.cn/zdzhang/hai/-/blob/main/docs/model_zoo.md\">\n    <ul>\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u7c92\u5b50\u7269\u7406&message=4 online, 3 TODO\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u5929\u4f53\u7269\u7406&message=1 TODO\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u540c\u6b65\u8f90\u5c04&message=2 TODO\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u4e2d\u5b50\u7269\u7406&message=0\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u901a\u7528\u795e\u7ecf\u7f51\u7edc&message=2 online, 5 TODO\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u7ecf\u5178\u673a\u5668\u5b66\u4e60&message=TODO\">\n    </ul>\n    </a>\n    \n</details>\n\n<details open>\n<summary><b>Dataset Zoo</b></summary>\n<a href=\"https://code.ihep.ac.cn/zdzhang/hai/-/blob/main/docs/datasets.md\">\n<ul>\n<li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=\u7c92\u5b50\u7269\u7406&message=3 available, 10+ TODO\">\n    <li>\n    <img src=\"https://img.shields.io/static/v1?style=social&label=CV&message=1 available\">\n    </a>\n</details>\n\n\n### Quick start\n```\npip install hepai --upgrade\nhai -V  # \u67e5\u770b\u7248\u672c\n```\n\n1. \u547d\u4ee4\u884c\u4f7f\u7528\n\n    ```bash\n    hai train <model_name>  # \u8bad\u7ec3\u6a21\u578b, \u4f8b\u5982: hai train particle_transformer\n    hai eval <model_name>\n    ```\n\n2. python\u5e93\u4f7f\u7528\n\n    python\u5e93\u7edf\u4e00\u63a5\u53e3\uff1a\n    ```python\n    import hai\n    \n    model = hai.hub.load('<model_name>')  # \u52a0\u8f7d\u6a21\u578b\n    config = model.config  # \u83b7\u53d6\u6a21\u578b\u914d\u7f6e\n    config.batch_size = 32  # \u4fee\u6539\u914d\u7f6e\n    model.trian()  # \u8bad\u7ec3\u6a21\u578b\n    model.eval()  # \u8bc4\u4f30\u6a21\u578b\n    model.infer('<data>')  # \u6a21\u578b\u63a8\u7406\n    hai.train('particle_transformer')\n    ```\n\n3. \u90e8\u7f72\u548c\u8fdc\u7a0b\u8c03\u7528\n\n    \u8de8\u8bed\u8a00\u3001\u8de8\u5e73\u53f0\u7684\u6a21\u578b\u90e8\u7f72\u548c\u8fdc\u7a0b\u8c03\u7528\n\n    \u670d\u52a1\u7aef\uff1a\n    ```bash\n    hai start server  # \u542f\u52a8\u670d\u52a1\n    ```\n    \u5ba2\u6237\u7aef\n    ```bash\n    pip install hai-client\n    ```\n    ```python\n    import hai_client\n    hai = hai_client.HAI()\n    ```\n    \u6216\u5176\u4ed6\u652f\u6301gRPC\u7684\u8bed\u8a00\uff0c\u8be6\u89c1[deploy](docs/deploy.md)\n\n\nnote\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "High energy phscis Artificial Intelligence plateform, HAI.",
    "version": "1.1.15",
    "project_urls": {
        "Homepage": "https://github.com/zhangzhengde0225/hai"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5974582584cb5bbba98cb01378d7bb00471f6cf1075f0d9978c57f7f2329b7c3",
                "md5": "348cb253d679a155427642c8c5229cee",
                "sha256": "8170869eae531849db9e0236096e85a1b63a91a7fc85166180ba80d00ca44d51"
            },
            "downloads": -1,
            "filename": "hepai-1.1.15-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "348cb253d679a155427642c8c5229cee",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.10.0",
            "size": 661204,
            "upload_time": "2024-12-21T16:14:51",
            "upload_time_iso_8601": "2024-12-21T16:14:51.216938Z",
            "url": "https://files.pythonhosted.org/packages/59/74/582584cb5bbba98cb01378d7bb00471f6cf1075f0d9978c57f7f2329b7c3/hepai-1.1.15-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "220844c08abe60fe7b38c2468a9b021fee667200256df70d0af56723b33eb29a",
                "md5": "12a56ab227a986fa8da80ca47f4f9467",
                "sha256": "faf54aed50f1c60ac163c39522a81ba957df9d9ce9d04301d87e48583a4b57f5"
            },
            "downloads": -1,
            "filename": "hepai-1.1.15.tar.gz",
            "has_sig": false,
            "md5_digest": "12a56ab227a986fa8da80ca47f4f9467",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10.0",
            "size": 386166,
            "upload_time": "2024-12-21T16:14:53",
            "upload_time_iso_8601": "2024-12-21T16:14:53.212466Z",
            "url": "https://files.pythonhosted.org/packages/22/08/44c08abe60fe7b38c2468a9b021fee667200256df70d0af56723b33eb29a/hepai-1.1.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-21 16:14:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zhangzhengde0225",
    "github_project": "hai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "damei",
            "specs": []
        },
        {
            "name": "easydict",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "opencv-python",
            "specs": []
        },
        {
            "name": "pillow",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "wandb",
            "specs": []
        },
        {
            "name": "grpcio-tools",
            "specs": []
        },
        {
            "name": "fastapi",
            "specs": []
        },
        {
            "name": "uvicorn",
            "specs": []
        },
        {
            "name": "openai",
            "specs": [
                [
                    "==",
                    "1.50.1"
                ]
            ]
        }
    ],
    "lcname": "hepai"
}
        
Elapsed time: 0.45540s