# herding
Kernel herding is a kind of quasi-monte carlo where samples are chosen successively to approximate known kernel moment constraints.
In the [video](https://github.com/microprediction/herding/tree/main/docs/assets/video) also linked below, the green dots are landmark locations `y` and the expected value of a gaussian kernel `E[ker(x,y)]` is assumed known for the desired distribution for `x`, which happens to be Gaussian.
See [examples](https://github.com/microprediction/herding/tree/main/examples)
[](docs/assets/video/herding_video_low_res.mp4)
Raw data
{
"_id": null,
"home_page": "https://github.com/microprediction/herding",
"name": "herding",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "microprediction",
"author_email": "peter.cotton@microprediction.com",
"download_url": "https://files.pythonhosted.org/packages/13/d1/64a7ee0b5cd645bd4465cd664a4665a5996d7ddf1a680ae4856f3e94d948/herding-0.0.2.tar.gz",
"platform": null,
"description": "# herding\nKernel herding is a kind of quasi-monte carlo where samples are chosen successively to approximate known kernel moment constraints. \n\nIn the [video](https://github.com/microprediction/herding/tree/main/docs/assets/video) also linked below, the green dots are landmark locations `y` and the expected value of a gaussian kernel `E[ker(x,y)]` is assumed known for the desired distribution for `x`, which happens to be Gaussian. \n\nSee [examples](https://github.com/microprediction/herding/tree/main/examples)\n\n\n[](docs/assets/video/herding_video_low_res.mp4)\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Kernel herding",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/microprediction/herding"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "156c5e38580aa2605075443e1f9bd21370fea38e574b81403896c5d508abf255",
"md5": "b5af826a9bb7d22043d0f049533ecea1",
"sha256": "3743943e0f4a08a66678257b259763933a5411f927f716af3c328a183570e5bf"
},
"downloads": -1,
"filename": "herding-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b5af826a9bb7d22043d0f049533ecea1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 14109,
"upload_time": "2025-02-06T17:32:52",
"upload_time_iso_8601": "2025-02-06T17:32:52.944732Z",
"url": "https://files.pythonhosted.org/packages/15/6c/5e38580aa2605075443e1f9bd21370fea38e574b81403896c5d508abf255/herding-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "13d164a7ee0b5cd645bd4465cd664a4665a5996d7ddf1a680ae4856f3e94d948",
"md5": "883cc8af700fabdedabde13d68b09035",
"sha256": "feff8648774e4c297fd0e7a14213ffdfe83130436ab7e7e48cc479620d01d599"
},
"downloads": -1,
"filename": "herding-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "883cc8af700fabdedabde13d68b09035",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 10113,
"upload_time": "2025-02-06T17:32:56",
"upload_time_iso_8601": "2025-02-06T17:32:56.099196Z",
"url": "https://files.pythonhosted.org/packages/13/d1/64a7ee0b5cd645bd4465cd664a4665a5996d7ddf1a680ae4856f3e94d948/herding-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-06 17:32:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "microprediction",
"github_project": "herding",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "scipy",
"specs": []
}
],
"lcname": "herding"
}