hierarchicalsoftmax


Namehierarchicalsoftmax JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/rbturnbull/hierarchicalsoftmax
SummaryA Hierarchical Softmax Framework for PyTorch.
upload_time2023-08-22 12:32:58
maintainer
docs_urlNone
authorRobert Turnbull
requires_python>=3.8,<4.0
licenseApache-2.0
keywords pytorch softmax
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            ================================================================
hierarchicalsoftmax
================================================================

.. start-badges

|testing badge| |coverage badge| |docs badge| |black badge|

.. |testing badge| image:: https://github.com/rbturnbull/hierarchicalsoftmax/actions/workflows/testing.yml/badge.svg
    :target: https://github.com/rbturnbull/hierarchicalsoftmax/actions

.. |docs badge| image:: https://github.com/rbturnbull/hierarchicalsoftmax/actions/workflows/docs.yml/badge.svg
    :target: https://rbturnbull.github.io/hierarchicalsoftmax
    
.. |black badge| image:: https://img.shields.io/badge/code%20style-black-000000.svg
    :target: https://github.com/psf/black
    
.. |coverage badge| image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/rbturnbull/f99aea7ea203d16edd063a8dd5ed395f/raw/coverage-badge.json
    :target: https://rbturnbull.github.io/hierarchicalsoftmax/coverage/
    
.. end-badges

A Hierarchical Softmax Framework for PyTorch.


.. start-quickstart


Installation
==================================

hierarchicalsoftmax can be installed from PyPI:

.. code-block:: bash

    pip install hierarchicalsoftmax


Alternatively, hierarchicalsoftmax can be installed using pip from the git repository:

.. code-block:: bash

    pip install git+https://github.com/rbturnbull/hierarchicalsoftmax.git


Usage
==================================

Build up a hierarchy tree for your categories using the `SoftmaxNode` instances:

.. code-block:: python

    from hierarchicalsoftmax import SoftmaxNode

    root = SoftmaxNode("root")
    a = SoftmaxNode("a", parent=root)
    aa = SoftmaxNode("aa", parent=a)
    ab = SoftmaxNode("ab", parent=a)
    b = SoftmaxNode("b", parent=root)
    ba = SoftmaxNode("ba", parent=b)
    bb = SoftmaxNode("bb", parent=b)

The `SoftmaxNode` class inherits from the `anytree <https://anytree.readthedocs.io/en/latest/index.html>`_ `Node` class 
which means that you can use methods from that library to build and interact with your hierarchy tree.

The tree can be rendered as a string with the `render` method:

.. code-block:: python

    root.render(print=True)

This results in a text representation of the tree::

    root
    ├── a
    │   ├── aa
    │   └── ab
    └── b
        ├── ba
        └── bb

The tree can also be rendered to a file using `graphviz` if it is installed:

.. code-block:: python

    root.render(filepath="tree.svg")

.. image:: https://raw.githubusercontent.com/rbturnbull/hierarchicalsoftmax/main/docs/images/example-tree.svg
    :alt: An example tree rendering.


Then you can add a final layer to your network that has the right size of outputs for the softmax layers.
You can do that manually by setting the output number of features to `root.layer_size`. 
Alternatively you can use the `HierarchicalSoftmaxLinear` or `HierarchicalSoftmaxLazyLinear` classes:

.. code-block:: python

    from torch import nn
    from hierarchicalsoftmax import HierarchicalSoftmaxLinear

    model = nn.Sequential(
        nn.Linear(in_features=20, out_features=100),
        nn.ReLU(),
        HierarchicalSoftmaxLinear(in_features=100, root=root)
    )

Once you have the hierarchy tree, then you can use the `HierarchicalSoftmaxLoss` module:

.. code-block:: python

    from hierarchicalsoftmax import HierarchicalSoftmaxLoss

    loss = HierarchicalSoftmaxLoss(root=root)

Metric functions are provided to show accuracy and the F1 score:

.. code-block:: python

    from hierarchicalsoftmax import greedy_accuracy, greedy_f1_score

    accuracy = greedy_accuracy(predictions, targets, root=root)
    f1 = greedy_f1_score(predictions, targets, root=root)

The nodes predicted from the final layer of the model can be inferred using the `greedy_predictions` function which provides a list of the predicted nodes:

.. code-block:: python

    from hierarchicalsoftmax import greedy_predictions

    outputs = model(inputs)
    inferred_nodes = greedy_predictions(outputs)


Relative contributions to the loss
==================================

The loss for each node can be weighted relative to each other by setting the `alpha` value for each parent node. 
By default the `alpha` value of a node is 1.

For example, the loss for the first level of classification (under the `root` node) will contribute twice as much to the loss than under the `a` or `b` nodes.

.. code-block:: python

    from hierarchicalsoftmax import SoftmaxNode

    root = SoftmaxNode("root", alpha=2.0)
    a = SoftmaxNode("a", parent=root)
    aa = SoftmaxNode("aa", parent=a)
    ab = SoftmaxNode("ab", parent=a)
    b = SoftmaxNode("b", parent=root)
    ba = SoftmaxNode("ba", parent=b)
    bb = SoftmaxNode("bb", parent=b)


Label Smoothing
==================================

You can add label smoothing to the loss by setting the `label_smoothing` parameter to any of the nodes.

Focal Loss
==================================

You can use the Focal Loss instead of a basic cross-entropy loss for any of the nodes by setting the `gamma` parameter to any of the nodes.


.. end-quickstart


Credits
==================================

* Robert Turnbull <robert.turnbull@unimelb.edu.au>


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rbturnbull/hierarchicalsoftmax",
    "name": "hierarchicalsoftmax",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "",
    "keywords": "pytorch,softmax",
    "author": "Robert Turnbull",
    "author_email": "robert.turnbull@unimelb.edu.au",
    "download_url": "https://files.pythonhosted.org/packages/28/f3/c39d040184ac01a53976ca272b4cc601f3e1177017d2afbcd8e0c253f323/hierarchicalsoftmax-1.0.2.tar.gz",
    "platform": null,
    "description": "================================================================\nhierarchicalsoftmax\n================================================================\n\n.. start-badges\n\n|testing badge| |coverage badge| |docs badge| |black badge|\n\n.. |testing badge| image:: https://github.com/rbturnbull/hierarchicalsoftmax/actions/workflows/testing.yml/badge.svg\n    :target: https://github.com/rbturnbull/hierarchicalsoftmax/actions\n\n.. |docs badge| image:: https://github.com/rbturnbull/hierarchicalsoftmax/actions/workflows/docs.yml/badge.svg\n    :target: https://rbturnbull.github.io/hierarchicalsoftmax\n    \n.. |black badge| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n    :target: https://github.com/psf/black\n    \n.. |coverage badge| image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/rbturnbull/f99aea7ea203d16edd063a8dd5ed395f/raw/coverage-badge.json\n    :target: https://rbturnbull.github.io/hierarchicalsoftmax/coverage/\n    \n.. end-badges\n\nA Hierarchical Softmax Framework for PyTorch.\n\n\n.. start-quickstart\n\n\nInstallation\n==================================\n\nhierarchicalsoftmax can be installed from PyPI:\n\n.. code-block:: bash\n\n    pip install hierarchicalsoftmax\n\n\nAlternatively, hierarchicalsoftmax can be installed using pip from the git repository:\n\n.. code-block:: bash\n\n    pip install git+https://github.com/rbturnbull/hierarchicalsoftmax.git\n\n\nUsage\n==================================\n\nBuild up a hierarchy tree for your categories using the `SoftmaxNode` instances:\n\n.. code-block:: python\n\n    from hierarchicalsoftmax import SoftmaxNode\n\n    root = SoftmaxNode(\"root\")\n    a = SoftmaxNode(\"a\", parent=root)\n    aa = SoftmaxNode(\"aa\", parent=a)\n    ab = SoftmaxNode(\"ab\", parent=a)\n    b = SoftmaxNode(\"b\", parent=root)\n    ba = SoftmaxNode(\"ba\", parent=b)\n    bb = SoftmaxNode(\"bb\", parent=b)\n\nThe `SoftmaxNode` class inherits from the `anytree <https://anytree.readthedocs.io/en/latest/index.html>`_ `Node` class \nwhich means that you can use methods from that library to build and interact with your hierarchy tree.\n\nThe tree can be rendered as a string with the `render` method:\n\n.. code-block:: python\n\n    root.render(print=True)\n\nThis results in a text representation of the tree::\n\n    root\n    \u251c\u2500\u2500 a\n    \u2502   \u251c\u2500\u2500 aa\n    \u2502   \u2514\u2500\u2500 ab\n    \u2514\u2500\u2500 b\n        \u251c\u2500\u2500 ba\n        \u2514\u2500\u2500 bb\n\nThe tree can also be rendered to a file using `graphviz` if it is installed:\n\n.. code-block:: python\n\n    root.render(filepath=\"tree.svg\")\n\n.. image:: https://raw.githubusercontent.com/rbturnbull/hierarchicalsoftmax/main/docs/images/example-tree.svg\n    :alt: An example tree rendering.\n\n\nThen you can add a final layer to your network that has the right size of outputs for the softmax layers.\nYou can do that manually by setting the output number of features to `root.layer_size`. \nAlternatively you can use the `HierarchicalSoftmaxLinear` or `HierarchicalSoftmaxLazyLinear` classes:\n\n.. code-block:: python\n\n    from torch import nn\n    from hierarchicalsoftmax import HierarchicalSoftmaxLinear\n\n    model = nn.Sequential(\n        nn.Linear(in_features=20, out_features=100),\n        nn.ReLU(),\n        HierarchicalSoftmaxLinear(in_features=100, root=root)\n    )\n\nOnce you have the hierarchy tree, then you can use the `HierarchicalSoftmaxLoss` module:\n\n.. code-block:: python\n\n    from hierarchicalsoftmax import HierarchicalSoftmaxLoss\n\n    loss = HierarchicalSoftmaxLoss(root=root)\n\nMetric functions are provided to show accuracy and the F1 score:\n\n.. code-block:: python\n\n    from hierarchicalsoftmax import greedy_accuracy, greedy_f1_score\n\n    accuracy = greedy_accuracy(predictions, targets, root=root)\n    f1 = greedy_f1_score(predictions, targets, root=root)\n\nThe nodes predicted from the final layer of the model can be inferred using the `greedy_predictions` function which provides a list of the predicted nodes:\n\n.. code-block:: python\n\n    from hierarchicalsoftmax import greedy_predictions\n\n    outputs = model(inputs)\n    inferred_nodes = greedy_predictions(outputs)\n\n\nRelative contributions to the loss\n==================================\n\nThe loss for each node can be weighted relative to each other by setting the `alpha` value for each parent node. \nBy default the `alpha` value of a node is 1.\n\nFor example, the loss for the first level of classification (under the `root` node) will contribute twice as much to the loss than under the `a` or `b` nodes.\n\n.. code-block:: python\n\n    from hierarchicalsoftmax import SoftmaxNode\n\n    root = SoftmaxNode(\"root\", alpha=2.0)\n    a = SoftmaxNode(\"a\", parent=root)\n    aa = SoftmaxNode(\"aa\", parent=a)\n    ab = SoftmaxNode(\"ab\", parent=a)\n    b = SoftmaxNode(\"b\", parent=root)\n    ba = SoftmaxNode(\"ba\", parent=b)\n    bb = SoftmaxNode(\"bb\", parent=b)\n\n\nLabel Smoothing\n==================================\n\nYou can add label smoothing to the loss by setting the `label_smoothing` parameter to any of the nodes.\n\nFocal Loss\n==================================\n\nYou can use the Focal Loss instead of a basic cross-entropy loss for any of the nodes by setting the `gamma` parameter to any of the nodes.\n\n\n.. end-quickstart\n\n\nCredits\n==================================\n\n* Robert Turnbull <robert.turnbull@unimelb.edu.au>\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A Hierarchical Softmax Framework for PyTorch.",
    "version": "1.0.2",
    "project_urls": {
        "Documentation": "https://rbturnbull.github.io/hierarchicalsoftmax/",
        "Homepage": "https://github.com/rbturnbull/hierarchicalsoftmax",
        "Repository": "https://github.com/rbturnbull/hierarchicalsoftmax"
    },
    "split_keywords": [
        "pytorch",
        "softmax"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "94585bfef43e4e00cafa01b0e483aa500d43d9f38b203b917b7e83b1d5b4a2ce",
                "md5": "c9d0595da838b2b321a0ec9b6d476df1",
                "sha256": "63cbbd76bc80f9980ce90e76394101850d780cdd7ddcaef5636fd12f5d829da0"
            },
            "downloads": -1,
            "filename": "hierarchicalsoftmax-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c9d0595da838b2b321a0ec9b6d476df1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 16051,
            "upload_time": "2023-08-22T12:32:56",
            "upload_time_iso_8601": "2023-08-22T12:32:56.183222Z",
            "url": "https://files.pythonhosted.org/packages/94/58/5bfef43e4e00cafa01b0e483aa500d43d9f38b203b917b7e83b1d5b4a2ce/hierarchicalsoftmax-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "28f3c39d040184ac01a53976ca272b4cc601f3e1177017d2afbcd8e0c253f323",
                "md5": "4899890eedce5ea978f5f84bfe92847e",
                "sha256": "a894dffdc7ec366d6c4846badcb3e21bf9b09b9eed247f4f116b310231195135"
            },
            "downloads": -1,
            "filename": "hierarchicalsoftmax-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4899890eedce5ea978f5f84bfe92847e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 14984,
            "upload_time": "2023-08-22T12:32:58",
            "upload_time_iso_8601": "2023-08-22T12:32:58.004496Z",
            "url": "https://files.pythonhosted.org/packages/28/f3/c39d040184ac01a53976ca272b4cc601f3e1177017d2afbcd8e0c253f323/hierarchicalsoftmax-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-22 12:32:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rbturnbull",
    "github_project": "hierarchicalsoftmax",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "hierarchicalsoftmax"
}
        
Elapsed time: 0.16629s