# 🎨 Image Gen MCP Server
> *"Fine. I'll do it myself."* — Thanos (and also me, after trying five different MCP servers that couldn't mix-and-match image models)
> I wanted a single, **simple** MCP server that lets agents generate **and** edit images across OpenAI, Google (Gemini/Imagen), Azure, Vertex, and OpenRouter—without yak‑shaving. So… here it is.
[](https://pypi.org/project/image-gen-mcp/)  
A multi‑provider **Model Context Protocol** (MCP) server for image **generation** and **editing** with a unified, type‑safe API. It returns MCP `ImageContent` blocks plus compact structured JSON so your client can route, log, or inspect results cleanly.
> [!IMPORTANT]
> This `README.md` is the canonical reference for API, capabilities, and usage. Some `/docs` files may lag behind.
---
## 🗺️ Table of Contents
- [Why this exists](#-why-this-exists)
- [Features](#-features)
- [Quick start (users)](#-quick-start-users)
- [Quick start (developers)](#-quick-start-developers)
- [Configure `mcp.json`](#-configure-mcpjson)
- [Tools API](#-tools-api)
- [`generate_image`](#-generate_image)
- [`edit_image`](#-edit_image)
- [`get_model_capabilities`](#-get_model_capabilities)
- [Providers & Models](#-providers--models)
- [Python client example](#-python-client-example)
- [Environment Variables](#-environment-variables)
- [Running via FastMCP CLI](#-running-via-fastmcp-cli)
- [Troubleshooting & FAQ](#-troubleshooting--faq)
- [Contributing & Releases](#-contributing--releases)
- [License](#-license)
---
## 🧠 Why this exists
Because I couldn’t find an MCP server that spoke **multiple image providers** with **one sane schema**. Some only generated, some only edited, some required summoning three different CLIs at midnight.
This one prioritizes:
- **One schema** across providers (AR & diffusion)
- **Minimal setup** (`uvx` or `pip`, drop a `mcp.json`, done)
- **Type‑safe I/O** with clear error shapes
- **Discoverability**: ask the server what models are live via `get_model_capabilities`
---
## ✨ Features
- **Unified tools**: `generate_image`, `edit_image`, `get_model_capabilities`
- **Providers**: OpenAI, Azure OpenAI, Google **Gemini**, **Vertex AI** (Imagen & Gemini), OpenRouter
- **Output**: MCP `ImageContent` blocks + small JSON metadata
- **Quality/size/orientation** normalization
- **Masking** support where engines allow it
- **Fail‑soft** errors with stable shape: `{ code, message, details? }`
---
## 🚀 Quick start (users)
Install and use as a published package.
```bash
# With uv (recommended)
uv add image-gen-mcp
# Or with pip
pip install image-gen-mcp
```
Then configure your MCP client.
### Configure `mcp.json`
Use `uvx` to run in an isolated env with correct deps:
```json
{
"mcpServers": {
"image-gen-mcp": {
"command": "uvx",
"args": ["--from", "image-gen-mcp", "image-gen-mcp"],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}
```
### First call
```json
{
"tool": "generate_image",
"params": {
"prompt": "A vibrant painting of a fox in a sunflower field",
"provider": "openai",
"model": "gpt-image-1"
}
}
```
---
## 🧑💻 Quick start (developers)
Run from source for local development or contributions.
**Prereqs**
- Python **3.12+**
- `uv` (recommended)
**Install deps**
```bash
uv sync --all-extras --dev
```
**Environment**
```bash
cp .env.example .env
# Add your keys
```
**Run the server**
```bash
# stdio (direct)
python -m image_gen_mcp.main
# via FastMCP CLI
fastmcp run image_gen_mcp/main.py:app
```
### Local VS Code `mcp.json` for testing
If you use a VS Code extension or local tooling that reads `.vscode/mcp.json`, here's a safe example to run the local server (do NOT commit secrets):
```json
{
"servers": {
"image-gen-mcp": {
"command": "python",
"args": ["-m", "image_gen_mcp.main"],
"env": {
"# NOTE": "Replace with your local keys for testing; do not commit.",
"OPENROUTER_API_KEY": "__REPLACE_WITH_YOUR_KEY__"
}
}
},
"inputs": []
}
```
Use this to run the server from your workspace instead of installing the package from PyPI. For CI or shared repos, store secrets in the environment or a secret manager and avoid checking them into git.
**Dev tasks**
```bash
uv run pytest -v
uv run ruff check .
uv run black --check .
uv run pyright
```
---
## 🧰 Tools API
All tools take **named parameters**. Outputs include structured JSON (for metadata/errors) and MCP `ImageContent` blocks (for actual images).
### `generate_image`
Create one or more images from a text prompt.
**Example**
```json
{
"prompt": "A vibrant painting of a fox in a sunflower field",
"provider": "openai",
"model": "gpt-image-1",
"n": 2,
"size": "M",
"orientation": "landscape"
}
```
**Parameters**
| Field | Type | Description |
|---|---|---|
| `prompt` | str | **Required.** Text description. |
| `provider` | enum | **Required.** `openai` \| `openrouter` \| `azure` \| `vertex` \| `gemini`. |
| `model` | enum | **Required.** Model id (see matrix). |
| `n` | int | Optional. Default 1; provider limits apply. |
| `size` | enum | Optional. `S` \| `M` \| `L`. |
| `orientation` | enum | Optional. `square` \| `portrait` \| `landscape`. |
| `quality` | enum | Optional. `draft` \| `standard` \| `high`. |
| `background` | enum | Optional. `transparent` \| `opaque` (when supported). |
| `negative_prompt` | str | Optional. Used when provider supports it. |
| `directory` | str | Optional. Filesystem directory where the server should save generated images. If omitted a unique temp directory is used. |
---
### `edit_image`
Edit an image with a prompt and optional mask.
**Example**
```json
{
"prompt": "Remove the background and make the subject wear a red scarf",
"provider": "openai",
"model": "gpt-image-1",
"images": ["data:image/png;base64,..."],
"mask": null
}
```
**Parameters**
| Field | Type | Description |
|---|---|---|
| `prompt` | str | **Required.** Edit instruction. |
| `images` | list<str> | **Required.** One or more source images (base64, data URL, or https URL). Most models use only the first image. |
| `mask` | str | Optional. Mask as base64/data URL/https URL. |
| `provider` | enum | **Required.** See above. |
| `model` | enum | **Required.** Model id (see matrix). |
| `n` | int | Optional. Default 1; provider limits apply. |
| `size` | enum | Optional. `S` \| `M` \| `L`. |
| `orientation` | enum | Optional. `square` \| `portrait` \| `landscape`. |
| `quality` | enum | Optional. `draft` \| `standard` \| `high`. |
| `background` | enum | Optional. `transparent` \| `opaque`. |
| `negative_prompt` | str | Optional. Negative prompt. |
| `directory` | str | Optional. Filesystem directory where the server should save edited images. If omitted a unique temp directory is used. |
---
### `get_model_capabilities`
Discover which providers/models are **actually** enabled based on your environment.
**Example**
```json
{ "provider": "openai" }
```
Call with no params to list **all** enabled providers/models.
**Output**: a `CapabilitiesResponse` with providers, models, and features.
---
## 🧭 Providers & Models
Routing is handled by a `ModelFactory` that maps model → engine. A compact, curated list keeps things understandable.
### Model Matrix
| Model | Family | Providers | Generate | Edit | Mask |
|---|---|---|:---:|:---:|:---:|
| `gpt-image-1` | AR | `openai`, `azure` | ✅ | ✅ | ✅ (OpenAI/Azure) |
| `dall-e-3` | Diffusion | `openai`, `azure` | ✅ | ❌ | — |
| `gemini-2.5-flash-image-preview` | AR | `gemini`, `vertex` | ✅ | ✅ (maskless) | ❌ |
| `imagen-4.0-generate-001` | Diffusion | `vertex` | ✅ | ❌ | — |
| `imagen-3.0-generate-002` | Diffusion | `vertex` | ✅ | ❌ | — |
| `imagen-4.0-fast-generate-001` | Diffusion | `vertex` | ✅ | ❌ | — |
| `imagen-4.0-ultra-generate-001` | Diffusion | `vertex` | ✅ | ❌ | — |
| `imagen-3.0-capability-001` | Diffusion | `vertex` | ❌ | ✅ | ✅ (mask via mask config) |
| `google/gemini-2.5-flash-image-preview` | AR | `openrouter` | ✅ | ✅ (maskless) | ❌ |
### Provider Model Support
| Provider | Supported Models |
|---|---|
| `openai` | `gpt-image-1`, `dall-e-3` |
| `azure` | `gpt-image-1`, `dall-e-3` |
| `gemini` | `gemini-2.5-flash-image-preview` |
| `vertex` | `imagen-4.0-generate-001`, `imagen-3.0-generate-002`, `gemini-2.5-flash-image-preview` |
| `openrouter` | `google/gemini-2.5-flash-image-preview` |
---
## 🐍 Python client example
```python
import asyncio
from fastmcp import Client
async def main():
# Assumes the server is running via: python -m image_gen_mcp.main
async with Client("image_gen_mcp/main.py") as client:
# 1) Capabilities
caps = await client.call_tool("get_model_capabilities")
print("Capabilities:", caps.structured_content or caps.text)
# 2) Generate
gen_result = await client.call_tool(
"generate_image",
{
"prompt": "a watercolor fox in a forest, soft light",
"provider": "openai",
"model": "gpt-image-1",
},
)
print("Generate Result:", gen_result.structured_content)
print("Image blocks:", len(gen_result.content))
asyncio.run(main())
```
---
## 🔐 Environment variables
Set only what you need:
| Variable | Required for | Description |
|---|---|---|
| `OPENAI_API_KEY` | OpenAI | API key for OpenAI. |
| `AZURE_OPENAI_API_KEY` | Azure OpenAI | Azure OpenAI key. |
| `AZURE_OPENAI_ENDPOINT` | Azure OpenAI | Azure endpoint URL. |
| `AZURE_OPENAI_API_VERSION` | Azure OpenAI | Optional; default `2024-02-15-preview`. |
| `GEMINI_API_KEY` | Gemini | Gemini Developer API key. |
| `OPENROUTER_API_KEY` | OpenRouter | OpenRouter API key. |
| `VERTEX_PROJECT` | Vertex AI | GCP project id. |
| `VERTEX_LOCATION` | Vertex AI | GCP region (e.g. `us-central1`). |
| `VERTEX_CREDENTIALS_PATH` | Vertex AI | Optional path to GCP JSON; ADC supported. |
---
## 🏃 Running via FastMCP CLI
Supports multiple transports:
- **stdio:** `fastmcp run image_gen_mcp/main.py:app`
- **SSE (HTTP):** `fastmcp run image_gen_mcp/main.py:app --transport sse --host 127.0.0.1 --port 8000`
- **HTTP:** `fastmcp run image_gen_mcp/main.py:app --transport http --host 127.0.0.1 --port 8000 --path /mcp`
**Design notes**
- **Schema:** public contract in `image_gen_mcp/schema.py` (Pydantic).
- **Engines:** modular adapters in `image_gen_mcp/engines/`, selected by `ModelFactory`.
- **Capabilities:** discovered dynamically via `image_gen_mcp/settings.py`.
- **Errors:** stable JSON error `{ code, message, details? }`.
---
## ⚠️ Testing remarks
I tested this project locally using the `openrouter`-backed model only. I could not access Gemini or OpenAI from my location (Hong Kong) due to regional restrictions — thanks, US government — so I couldn't fully exercise those providers.
Because of that limitation, the `gemini`/`vertex` and `openai` (including Azure) adapters may contain bugs or untested edge cases. If you use those providers and find issues, please open an issue or, even better, submit a pull request with a fix — contributions are welcome.
Suggested info to include when filing an issue:
- Your provider and model (e.g., `openai:gpt-image-1`, `vertex:imagen-4.0-generate-001`)
- Full stderr/server logs showing the error
- Minimal reproduction steps or a short test script
Thanks — and PRs welcome!
---
## 🤝 Contributing & Releases
PRs welcome! Please run tests and linters locally.
**Release process (GitHub Actions)**
1. **Automated (recommended)**
- Actions → **Manual Release**
- Pick version bump: patch / minor / major
- The workflow tags, builds the changelog, and publishes to PyPI
2. **Manual**
- `git tag vX.Y.Z`
- `git push origin vX.Y.Z`
- Create a GitHub Release from the tag
---
## 📄 License
Apache-2.0 — see `LICENSE`.
Raw data
{
"_id": null,
"home_page": null,
"name": "image-gen-mcp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": "Simon Choi <simon.choi034@gmail.com>",
"keywords": "ai, dall-e, gemini, image-generation, imagen, mcp, model-context-protocol, openai, vertex-ai",
"author": null,
"author_email": "Simon Choi <simon.choi034@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/33/04/1f189e0539063c98d7d3045b1d250c1817d367eea4a2afaf3dd9952a7c64/image_gen_mcp-1.4.0.tar.gz",
"platform": null,
"description": "# \ud83c\udfa8 Image Gen MCP Server\n\n> *\"Fine. I'll do it myself.\"* \u2014 Thanos (and also me, after trying five different MCP servers that couldn't mix-and-match image models) \n> I wanted a single, **simple** MCP server that lets agents generate **and** edit images across OpenAI, Google (Gemini/Imagen), Azure, Vertex, and OpenRouter\u2014without yak\u2011shaving. So\u2026 here it is.\n\n[](https://pypi.org/project/image-gen-mcp/)  \n\nA multi\u2011provider **Model Context Protocol** (MCP) server for image **generation** and **editing** with a unified, type\u2011safe API. It returns MCP `ImageContent` blocks plus compact structured JSON so your client can route, log, or inspect results cleanly.\n\n> [!IMPORTANT]\n> This `README.md` is the canonical reference for API, capabilities, and usage. Some `/docs` files may lag behind.\n\n---\n\n## \ud83d\uddfa\ufe0f Table of Contents\n\n- [Why this exists](#-why-this-exists)\n- [Features](#-features)\n- [Quick start (users)](#-quick-start-users)\n- [Quick start (developers)](#-quick-start-developers)\n- [Configure `mcp.json`](#-configure-mcpjson)\n- [Tools API](#-tools-api)\n - [`generate_image`](#-generate_image)\n - [`edit_image`](#-edit_image)\n - [`get_model_capabilities`](#-get_model_capabilities)\n- [Providers & Models](#-providers--models)\n- [Python client example](#-python-client-example)\n- [Environment Variables](#-environment-variables)\n- [Running via FastMCP CLI](#-running-via-fastmcp-cli)\n- [Troubleshooting & FAQ](#-troubleshooting--faq)\n- [Contributing & Releases](#-contributing--releases)\n- [License](#-license)\n\n---\n\n## \ud83e\udde0 Why this exists\n\nBecause I couldn\u2019t find an MCP server that spoke **multiple image providers** with **one sane schema**. Some only generated, some only edited, some required summoning three different CLIs at midnight. \nThis one prioritizes:\n\n- **One schema** across providers (AR & diffusion)\n- **Minimal setup** (`uvx` or `pip`, drop a `mcp.json`, done)\n- **Type\u2011safe I/O** with clear error shapes\n- **Discoverability**: ask the server what models are live via `get_model_capabilities`\n\n---\n\n## \u2728 Features\n\n- **Unified tools**: `generate_image`, `edit_image`, `get_model_capabilities`\n- **Providers**: OpenAI, Azure OpenAI, Google **Gemini**, **Vertex AI** (Imagen & Gemini), OpenRouter\n- **Output**: MCP `ImageContent` blocks + small JSON metadata\n- **Quality/size/orientation** normalization\n- **Masking** support where engines allow it\n- **Fail\u2011soft** errors with stable shape: `{ code, message, details? }`\n\n---\n\n## \ud83d\ude80 Quick start (users)\n\nInstall and use as a published package.\n\n```bash\n# With uv (recommended)\nuv add image-gen-mcp\n\n# Or with pip\npip install image-gen-mcp\n```\n\nThen configure your MCP client.\n\n### Configure `mcp.json`\n\nUse `uvx` to run in an isolated env with correct deps:\n\n```json\n{\n \"mcpServers\": {\n \"image-gen-mcp\": {\n \"command\": \"uvx\",\n \"args\": [\"--from\", \"image-gen-mcp\", \"image-gen-mcp\"],\n \"env\": {\n \"OPENAI_API_KEY\": \"your-key-here\"\n }\n }\n }\n}\n```\n\n### First call\n\n```json\n{\n \"tool\": \"generate_image\",\n \"params\": {\n \"prompt\": \"A vibrant painting of a fox in a sunflower field\",\n \"provider\": \"openai\",\n \"model\": \"gpt-image-1\"\n }\n}\n```\n\n---\n\n## \ud83e\uddd1\u200d\ud83d\udcbb Quick start (developers)\n\nRun from source for local development or contributions.\n\n**Prereqs**\n- Python **3.12+**\n- `uv` (recommended)\n\n**Install deps**\n\n```bash\nuv sync --all-extras --dev\n```\n\n**Environment**\n\n```bash\ncp .env.example .env\n# Add your keys\n```\n\n**Run the server**\n\n```bash\n# stdio (direct)\npython -m image_gen_mcp.main\n\n# via FastMCP CLI\nfastmcp run image_gen_mcp/main.py:app\n```\n\n### Local VS Code `mcp.json` for testing\n\nIf you use a VS Code extension or local tooling that reads `.vscode/mcp.json`, here's a safe example to run the local server (do NOT commit secrets):\n\n```json\n{\n \"servers\": {\n \"image-gen-mcp\": {\n \"command\": \"python\",\n \"args\": [\"-m\", \"image_gen_mcp.main\"],\n \"env\": {\n \"# NOTE\": \"Replace with your local keys for testing; do not commit.\",\n \"OPENROUTER_API_KEY\": \"__REPLACE_WITH_YOUR_KEY__\"\n }\n }\n },\n \"inputs\": []\n}\n```\n\nUse this to run the server from your workspace instead of installing the package from PyPI. For CI or shared repos, store secrets in the environment or a secret manager and avoid checking them into git.\n\n**Dev tasks**\n\n```bash\nuv run pytest -v\nuv run ruff check .\nuv run black --check .\nuv run pyright\n```\n\n---\n\n## \ud83e\uddf0 Tools API\n\nAll tools take **named parameters**. Outputs include structured JSON (for metadata/errors) and MCP `ImageContent` blocks (for actual images).\n\n### `generate_image`\n\nCreate one or more images from a text prompt.\n\n**Example**\n\n```json\n{\n \"prompt\": \"A vibrant painting of a fox in a sunflower field\",\n \"provider\": \"openai\",\n \"model\": \"gpt-image-1\",\n \"n\": 2,\n \"size\": \"M\",\n \"orientation\": \"landscape\"\n}\n```\n\n**Parameters**\n\n| Field | Type | Description |\n|---|---|---|\n| `prompt` | str | **Required.** Text description. |\n| `provider` | enum | **Required.** `openai` \\| `openrouter` \\| `azure` \\| `vertex` \\| `gemini`. |\n| `model` | enum | **Required.** Model id (see matrix). |\n| `n` | int | Optional. Default 1; provider limits apply. |\n| `size` | enum | Optional. `S` \\| `M` \\| `L`. |\n| `orientation` | enum | Optional. `square` \\| `portrait` \\| `landscape`. |\n| `quality` | enum | Optional. `draft` \\| `standard` \\| `high`. |\n| `background` | enum | Optional. `transparent` \\| `opaque` (when supported). |\n| `negative_prompt` | str | Optional. Used when provider supports it. |\n| `directory` | str | Optional. Filesystem directory where the server should save generated images. If omitted a unique temp directory is used. |\n\n---\n\n### `edit_image`\n\nEdit an image with a prompt and optional mask.\n\n**Example**\n\n```json\n{\n \"prompt\": \"Remove the background and make the subject wear a red scarf\",\n \"provider\": \"openai\",\n \"model\": \"gpt-image-1\",\n \"images\": [\"data:image/png;base64,...\"],\n \"mask\": null\n}\n```\n\n**Parameters**\n\n| Field | Type | Description |\n|---|---|---|\n| `prompt` | str | **Required.** Edit instruction. |\n| `images` | list<str> | **Required.** One or more source images (base64, data URL, or https URL). Most models use only the first image. |\n| `mask` | str | Optional. Mask as base64/data URL/https URL. |\n| `provider` | enum | **Required.** See above. |\n| `model` | enum | **Required.** Model id (see matrix). |\n| `n` | int | Optional. Default 1; provider limits apply. |\n| `size` | enum | Optional. `S` \\| `M` \\| `L`. |\n| `orientation` | enum | Optional. `square` \\| `portrait` \\| `landscape`. |\n| `quality` | enum | Optional. `draft` \\| `standard` \\| `high`. |\n| `background` | enum | Optional. `transparent` \\| `opaque`. |\n| `negative_prompt` | str | Optional. Negative prompt. |\n| `directory` | str | Optional. Filesystem directory where the server should save edited images. If omitted a unique temp directory is used. |\n\n---\n\n### `get_model_capabilities`\n\nDiscover which providers/models are **actually** enabled based on your environment.\n\n**Example**\n\n```json\n{ \"provider\": \"openai\" }\n```\n\nCall with no params to list **all** enabled providers/models.\n\n**Output**: a `CapabilitiesResponse` with providers, models, and features.\n\n---\n\n## \ud83e\udded Providers & Models\n\nRouting is handled by a `ModelFactory` that maps model \u2192 engine. A compact, curated list keeps things understandable.\n\n### Model Matrix\n\n| Model | Family | Providers | Generate | Edit | Mask |\n|---|---|---|:---:|:---:|:---:|\n| `gpt-image-1` | AR | `openai`, `azure` | \u2705 | \u2705 | \u2705 (OpenAI/Azure) |\n| `dall-e-3` | Diffusion | `openai`, `azure` | \u2705 | \u274c | \u2014 |\n| `gemini-2.5-flash-image-preview` | AR | `gemini`, `vertex` | \u2705 | \u2705 (maskless) | \u274c |\n| `imagen-4.0-generate-001` | Diffusion | `vertex` | \u2705 | \u274c | \u2014 |\n| `imagen-3.0-generate-002` | Diffusion | `vertex` | \u2705 | \u274c | \u2014 |\n| `imagen-4.0-fast-generate-001` | Diffusion | `vertex` | \u2705 | \u274c | \u2014 |\n| `imagen-4.0-ultra-generate-001` | Diffusion | `vertex` | \u2705 | \u274c | \u2014 |\n| `imagen-3.0-capability-001` | Diffusion | `vertex` | \u274c | \u2705 | \u2705 (mask via mask config) |\n| `google/gemini-2.5-flash-image-preview` | AR | `openrouter` | \u2705 | \u2705 (maskless) | \u274c |\n\n### Provider Model Support\n\n| Provider | Supported Models |\n|---|---|\n| `openai` | `gpt-image-1`, `dall-e-3` |\n| `azure` | `gpt-image-1`, `dall-e-3` |\n| `gemini` | `gemini-2.5-flash-image-preview` |\n| `vertex` | `imagen-4.0-generate-001`, `imagen-3.0-generate-002`, `gemini-2.5-flash-image-preview` |\n| `openrouter` | `google/gemini-2.5-flash-image-preview` |\n\n---\n\n## \ud83d\udc0d Python client example\n\n```python\nimport asyncio\nfrom fastmcp import Client\n\n\nasync def main():\n # Assumes the server is running via: python -m image_gen_mcp.main\n async with Client(\"image_gen_mcp/main.py\") as client:\n # 1) Capabilities\n caps = await client.call_tool(\"get_model_capabilities\")\n print(\"Capabilities:\", caps.structured_content or caps.text)\n\n # 2) Generate\n gen_result = await client.call_tool(\n \"generate_image\",\n {\n \"prompt\": \"a watercolor fox in a forest, soft light\",\n \"provider\": \"openai\",\n \"model\": \"gpt-image-1\",\n },\n )\n print(\"Generate Result:\", gen_result.structured_content)\n print(\"Image blocks:\", len(gen_result.content))\n\n\nasyncio.run(main())\n```\n\n---\n\n## \ud83d\udd10 Environment variables\n\nSet only what you need:\n\n| Variable | Required for | Description |\n|---|---|---|\n| `OPENAI_API_KEY` | OpenAI | API key for OpenAI. |\n| `AZURE_OPENAI_API_KEY` | Azure OpenAI | Azure OpenAI key. |\n| `AZURE_OPENAI_ENDPOINT` | Azure OpenAI | Azure endpoint URL. |\n| `AZURE_OPENAI_API_VERSION` | Azure OpenAI | Optional; default `2024-02-15-preview`. |\n| `GEMINI_API_KEY` | Gemini | Gemini Developer API key. |\n| `OPENROUTER_API_KEY` | OpenRouter | OpenRouter API key. |\n| `VERTEX_PROJECT` | Vertex AI | GCP project id. |\n| `VERTEX_LOCATION` | Vertex AI | GCP region (e.g. `us-central1`). |\n| `VERTEX_CREDENTIALS_PATH` | Vertex AI | Optional path to GCP JSON; ADC supported. |\n\n---\n\n## \ud83c\udfc3 Running via FastMCP CLI\n\nSupports multiple transports:\n\n- **stdio:** `fastmcp run image_gen_mcp/main.py:app`\n- **SSE (HTTP):** `fastmcp run image_gen_mcp/main.py:app --transport sse --host 127.0.0.1 --port 8000`\n- **HTTP:** `fastmcp run image_gen_mcp/main.py:app --transport http --host 127.0.0.1 --port 8000 --path /mcp`\n\n**Design notes**\n\n- **Schema:** public contract in `image_gen_mcp/schema.py` (Pydantic).\n- **Engines:** modular adapters in `image_gen_mcp/engines/`, selected by `ModelFactory`.\n- **Capabilities:** discovered dynamically via `image_gen_mcp/settings.py`.\n- **Errors:** stable JSON error `{ code, message, details? }`.\n\n---\n\n## \u26a0\ufe0f Testing remarks\n\nI tested this project locally using the `openrouter`-backed model only. I could not access Gemini or OpenAI from my location (Hong Kong) due to regional restrictions \u2014 thanks, US government \u2014 so I couldn't fully exercise those providers.\n\nBecause of that limitation, the `gemini`/`vertex` and `openai` (including Azure) adapters may contain bugs or untested edge cases. If you use those providers and find issues, please open an issue or, even better, submit a pull request with a fix \u2014 contributions are welcome.\n\nSuggested info to include when filing an issue:\n- Your provider and model (e.g., `openai:gpt-image-1`, `vertex:imagen-4.0-generate-001`)\n- Full stderr/server logs showing the error\n- Minimal reproduction steps or a short test script\n\nThanks \u2014 and PRs welcome!\n\n---\n\n## \ud83e\udd1d Contributing & Releases\n\nPRs welcome! Please run tests and linters locally.\n\n**Release process (GitHub Actions)**\n\n1. **Automated (recommended)**\n - Actions \u2192 **Manual Release**\n - Pick version bump: patch / minor / major\n - The workflow tags, builds the changelog, and publishes to PyPI\n\n2. **Manual**\n - `git tag vX.Y.Z`\n - `git push origin vX.Y.Z`\n - Create a GitHub Release from the tag\n\n---\n\n## \ud83d\udcc4 License\n\nApache-2.0 \u2014 see `LICENSE`.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "MCP image generation server with modular engines and routing",
"version": "1.4.0",
"project_urls": {
"Changelog": "https://github.com/simonChoi034/image-gen-mcp/releases",
"Homepage": "https://github.com/simonChoi034/image-gen-mcp",
"Issues": "https://github.com/simonChoi034/image-gen-mcp/issues",
"Repository": "https://github.com/simonChoi034/image-gen-mcp"
},
"split_keywords": [
"ai",
" dall-e",
" gemini",
" image-generation",
" imagen",
" mcp",
" model-context-protocol",
" openai",
" vertex-ai"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b1f7bcb718febd6299f2168617ef26e4b21776fede974ce2a1675812e7647e05",
"md5": "aa05ceee9c22d17db821edde34ba1fa5",
"sha256": "9068c7ac85cd1ec2d49ac41e4afe9928671fbad2e3426c92942c17f707289317"
},
"downloads": -1,
"filename": "image_gen_mcp-1.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "aa05ceee9c22d17db821edde34ba1fa5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 54300,
"upload_time": "2025-09-11T04:36:57",
"upload_time_iso_8601": "2025-09-11T04:36:57.254324Z",
"url": "https://files.pythonhosted.org/packages/b1/f7/bcb718febd6299f2168617ef26e4b21776fede974ce2a1675812e7647e05/image_gen_mcp-1.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "33041f189e0539063c98d7d3045b1d250c1817d367eea4a2afaf3dd9952a7c64",
"md5": "219a52a3e9b64151caabb2d016c63d8d",
"sha256": "6fa2652a20885b3a68792c8775d83453bb320b79e58c3c5f593e6401971db6bc"
},
"downloads": -1,
"filename": "image_gen_mcp-1.4.0.tar.gz",
"has_sig": false,
"md5_digest": "219a52a3e9b64151caabb2d016c63d8d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 2276379,
"upload_time": "2025-09-11T04:36:58",
"upload_time_iso_8601": "2025-09-11T04:36:58.974401Z",
"url": "https://files.pythonhosted.org/packages/33/04/1f189e0539063c98d7d3045b1d250c1817d367eea4a2afaf3dd9952a7c64/image_gen_mcp-1.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-11 04:36:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "simonChoi034",
"github_project": "image-gen-mcp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "image-gen-mcp"
}