A library for image augmentation in machine learning experiments, particularly convolutional
neural networks. Supports the augmentation of images, keypoints/landmarks, bounding boxes, heatmaps and segmentation
maps in a variety of different ways.
Raw data
{
"_id": null,
"home_page": "https://github.com/aleju/imgaug",
"name": "imgaug",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "augmentation,image,deep learning,neural network,CNN,machine learning,computer vision,overfitting",
"author": "Alexander Jung",
"author_email": "kontakt@ajung.name",
"download_url": "https://files.pythonhosted.org/packages/25/7d/820295b8fdaf06dce9688ef2fdeb5a317896d3276db7723e5a94e85e1253/imgaug-0.4.0.tar.gz",
"platform": "",
"description": "A library for image augmentation in machine learning experiments, particularly convolutional\nneural networks. Supports the augmentation of images, keypoints/landmarks, bounding boxes, heatmaps and segmentation\nmaps in a variety of different ways.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Image augmentation library for deep neural networks",
"version": "0.4.0",
"split_keywords": [
"augmentation",
"image",
"deep learning",
"neural network",
"cnn",
"machine learning",
"computer vision",
"overfitting"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "4116de838f2a266ff47d069a9f84e288",
"sha256": "ce61e65b4eb7405fc62c1b0a79d2fa92fd47f763aaecb65152d29243592111f9"
},
"downloads": -1,
"filename": "imgaug-0.4.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "4116de838f2a266ff47d069a9f84e288",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 948018,
"upload_time": "2020-02-05T20:54:22",
"upload_time_iso_8601": "2020-02-05T20:54:22.293610Z",
"url": "https://files.pythonhosted.org/packages/66/b1/af3142c4a85cba6da9f4ebb5ff4e21e2616309552caca5e8acefe9840622/imgaug-0.4.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "ec61636195269f3cad0dbc9659246a59",
"sha256": "46bab63ed38f8980630ff721a09ca2281b7dbd4d8c11258818b6ebcc69ea46c7"
},
"downloads": -1,
"filename": "imgaug-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "ec61636195269f3cad0dbc9659246a59",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 937254,
"upload_time": "2020-02-05T20:54:24",
"upload_time_iso_8601": "2020-02-05T20:54:24.835248Z",
"url": "https://files.pythonhosted.org/packages/25/7d/820295b8fdaf06dce9688ef2fdeb5a317896d3276db7723e5a94e85e1253/imgaug-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-02-05 20:54:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "aleju",
"github_project": "imgaug",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "six",
"specs": []
},
{
"name": "numpy",
"specs": [
[
">=",
"1.15"
]
]
},
{
"name": "scipy",
"specs": []
},
{
"name": "Pillow",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "scikit-image",
"specs": [
[
">=",
"0.14.2"
]
]
},
{
"name": "opencv-python-headless",
"specs": []
},
{
"name": "imageio",
"specs": [
[
"<=",
"2.6.1"
]
]
},
{
"name": "imageio",
"specs": []
},
{
"name": "Shapely",
"specs": []
},
{
"name": "numba",
"specs": []
}
],
"lcname": "imgaug"
}