ipyvasp


Nameipyvasp JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/massgh/ipyvasp
SummaryA processing tool for VASP DFT input/output processing in Jupyter Notebook.
upload_time2025-07-20 19:46:39
maintainerNone
docs_urlNone
authorAbdul Saboor
requires_python>=3.9
licenseMIT
keywords jupyter widgets ipython vasp dft
VCS
bugtrack_url
requirements ipython ipywidgets matplotlib numpy pandas Pillow plotly requests scipy typer weas-widget einteract sympy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# IPyVASP

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15482350.svg)](https://doi.org/10.5281/zenodo.15482350)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/asaboor-gh/ipyvasp/HEAD?urlpath=%2Fdoc%2Ftree%2Fdocs%2Fsource%2Fnotebooks%2Fquickstart.ipynb)
[![PyPI Downloads](https://static.pepy.tech/badge/ipyvasp)](https://pepy.tech/projects/ipyvasp)

An VASP-based DFT pre and post processing tool.

## Install
Currently the package is being built and not stable. If you want to use development version, install this way:(recommended to install in a virtual environment)
```
git clone https://github.com/massgh/ipyvasp.git
cd ipyvasp
pip install -e .
```

## Documentataion
- [Latest at Github Pages](https://asaboor-gh.github.io/ipyvasp/) 
- [Read the Docs](https://ipyvasp.readthedocs.io/)

## Showcase Examples
Plot 2D BZ layer on top of 3D!

```python
import ipyvasp as ipv
pos =  ipv.POSCAR('FCC POSACR FILE').set_zdir([1,1,1])
ax = pos.splot_bz(vectors = None,color='skyblue',lw=0.2,alpha=0.2,fill=True)

kpts = [[0,-1/2,0],[0,0,0]]
pos.splot_kpath(kpts,labels=[str(k) for k in kpts],zorder=-1) # At 3D BZ

pos2 = pos.transform(lambda a,b,c: (a-c, b-c, a+b+c)) # 111 plane
pos2.splot_bz('xy',ax=ax,zoffset=0.15,vectors=None,color='navy')

kp2 = pos.bz.map_kpoints(pos2.bz, kpts)
pos2.splot_kpath(kp2,labels=[str(k) for k in kp2.round(1).tolist()],color='navy',fmt_label=lambda lab: (lab+'\n', dict(va='center',color='navy')),zorder=3) 

ax.set_axis_off()
```

![BZ](BZ.png)

Interactively select bandstructure path by clicking on high symmetry points on plot!

![KP](KP.png)

Apply operations on POSCAR and simultaneously view using plotly's `FigureWidget` in Jupyterlab side by side.

![snip](op.png)

![BandsWidget](Bands.jpg)
More coming soon! You can test these examples on [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/asaboor-gh/ipyvasp/HEAD?urlpath=%2Fdoc%2Ftree%2Fdocs%2Fsource%2Fnotebooks%2Fquickstart.ipynb).



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/massgh/ipyvasp",
    "name": "ipyvasp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Jupyter, Widgets, IPython, VASP, DFT",
    "author": "Abdul Saboor",
    "author_email": "mass_qau@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/d5/2a/4aa1179929e3f6844f9e2baab0664913b3baf311052b915518951b9b31f9/ipyvasp-1.0.1.tar.gz",
    "platform": null,
    "description": "\r\n# IPyVASP\r\n\r\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15482350.svg)](https://doi.org/10.5281/zenodo.15482350)\r\n[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/asaboor-gh/ipyvasp/HEAD?urlpath=%2Fdoc%2Ftree%2Fdocs%2Fsource%2Fnotebooks%2Fquickstart.ipynb)\r\n[![PyPI Downloads](https://static.pepy.tech/badge/ipyvasp)](https://pepy.tech/projects/ipyvasp)\r\n\r\nAn VASP-based DFT pre and post processing tool.\r\n\r\n## Install\r\nCurrently the package is being built and not stable. If you want to use development version, install this way:(recommended to install in a virtual environment)\r\n```\r\ngit clone https://github.com/massgh/ipyvasp.git\r\ncd ipyvasp\r\npip install -e .\r\n```\r\n\r\n## Documentataion\r\n- [Latest at Github Pages](https://asaboor-gh.github.io/ipyvasp/) \r\n- [Read the Docs](https://ipyvasp.readthedocs.io/)\r\n\r\n## Showcase Examples\r\nPlot 2D BZ layer on top of 3D!\r\n\r\n```python\r\nimport ipyvasp as ipv\r\npos =  ipv.POSCAR('FCC POSACR FILE').set_zdir([1,1,1])\r\nax = pos.splot_bz(vectors = None,color='skyblue',lw=0.2,alpha=0.2,fill=True)\r\n\r\nkpts = [[0,-1/2,0],[0,0,0]]\r\npos.splot_kpath(kpts,labels=[str(k) for k in kpts],zorder=-1) # At 3D BZ\r\n\r\npos2 = pos.transform(lambda a,b,c: (a-c, b-c, a+b+c)) # 111 plane\r\npos2.splot_bz('xy',ax=ax,zoffset=0.15,vectors=None,color='navy')\r\n\r\nkp2 = pos.bz.map_kpoints(pos2.bz, kpts)\r\npos2.splot_kpath(kp2,labels=[str(k) for k in kp2.round(1).tolist()],color='navy',fmt_label=lambda lab: (lab+'\\n', dict(va='center',color='navy')),zorder=3) \r\n\r\nax.set_axis_off()\r\n```\r\n\r\n![BZ](BZ.png)\r\n\r\nInteractively select bandstructure path by clicking on high symmetry points on plot!\r\n\r\n![KP](KP.png)\r\n\r\nApply operations on POSCAR and simultaneously view using plotly's `FigureWidget` in Jupyterlab side by side.\r\n\r\n![snip](op.png)\r\n\r\n![BandsWidget](Bands.jpg)\r\nMore coming soon! You can test these examples on [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/asaboor-gh/ipyvasp/HEAD?urlpath=%2Fdoc%2Ftree%2Fdocs%2Fsource%2Fnotebooks%2Fquickstart.ipynb).\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A processing tool for VASP DFT input/output processing in Jupyter Notebook.",
    "version": "1.0.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/massgh/ipyvasp/issues",
        "Homepage": "https://github.com/massgh/ipyvasp"
    },
    "split_keywords": [
        "jupyter",
        " widgets",
        " ipython",
        " vasp",
        " dft"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3be4ffd8c20ad38ca9eb7dc2deb908bdd9ea12b5141c0aec096043c74b69868f",
                "md5": "1aaac3eb3c0f6726a248a14967384ee0",
                "sha256": "2e8e940a3e7683d25625d471c8457fae6b54ea63fc426303c7ce6ed169ecb122"
            },
            "downloads": -1,
            "filename": "ipyvasp-1.0.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1aaac3eb3c0f6726a248a14967384ee0",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.9",
            "size": 145045,
            "upload_time": "2025-07-20T19:46:38",
            "upload_time_iso_8601": "2025-07-20T19:46:38.511558Z",
            "url": "https://files.pythonhosted.org/packages/3b/e4/ffd8c20ad38ca9eb7dc2deb908bdd9ea12b5141c0aec096043c74b69868f/ipyvasp-1.0.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d52a4aa1179929e3f6844f9e2baab0664913b3baf311052b915518951b9b31f9",
                "md5": "149d4b79bbfffd97e1fc52a6d230e2f2",
                "sha256": "5bc07e5f23226f12829c3cb66f70e2e31c372d4a045152308298144a221a5a2f"
            },
            "downloads": -1,
            "filename": "ipyvasp-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "149d4b79bbfffd97e1fc52a6d230e2f2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 132927,
            "upload_time": "2025-07-20T19:46:39",
            "upload_time_iso_8601": "2025-07-20T19:46:39.930647Z",
            "url": "https://files.pythonhosted.org/packages/d5/2a/4aa1179929e3f6844f9e2baab0664913b3baf311052b915518951b9b31f9/ipyvasp-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-20 19:46:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "massgh",
    "github_project": "ipyvasp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "ipython",
            "specs": [
                [
                    "==",
                    "8.7.0"
                ]
            ]
        },
        {
            "name": "ipywidgets",
            "specs": [
                [
                    ">=",
                    "8.0.4"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.7.5"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.23.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.4.4"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "9.3.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    ">=",
                    "6.2.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.28.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.9.1"
                ]
            ]
        },
        {
            "name": "typer",
            "specs": [
                [
                    ">=",
                    "0.9.0"
                ]
            ]
        },
        {
            "name": "weas-widget",
            "specs": [
                [
                    ">=",
                    "0.1.26"
                ]
            ]
        },
        {
            "name": "einteract",
            "specs": []
        },
        {
            "name": "sympy",
            "specs": []
        }
    ],
    "lcname": "ipyvasp"
}
        
Elapsed time: 0.97357s