ipyvasp


Nameipyvasp JSON
Version 0.9.89 PyPI version JSON
download
home_pagehttps://github.com/massgh/ipyvasp
SummaryA processing tool for VASP DFT input/output processing in Jupyter Notebook.
upload_time2024-12-02 02:13:51
maintainerNone
docs_urlNone
authorAbdul Saboor
requires_python>=3.8
licenseMIT
keywords jupyter widgets ipython vasp dft
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# ipyvasp

An VASP-based DFT pre and post processing tool.

## Install
Currently the package is being built and not stable. If you want to use development version, install this way:(recommended to install in a virtual environment)
```
git clone https://github.com/massgh/ipyvasp.git
cd ipyvasp
pip install -e .
```

## Showcase Examples
Plot 2D BZ layer on top of 3D!

```python
import ipyvasp as ipv
pos =  ipv.POSCAR('FCC POSACR FILE').set_zdir([1,1,1])
ax = pos.splot_bz(vectors = None,color='skyblue',lw=0.2,alpha=0.2,fill=True)

kpts = [[0,-1/2,0],[0,0,0]]
pos.splot_kpath(kpts,labels=[str(k) for k in kpts],zorder=-1) # At 3D BZ

pos2 = pos.transform(lambda a,b,c: (a-c, b-c, a+b+c)) # 111 plane
pos2.splot_bz('xy',ax=ax,zoffset=0.15,vectors=None,color='navy')

kp2 = pos.bz.map_kpoints(pos2.bz, kpts)
pos2.splot_kpath(kp2,labels=[str(k) for k in kp2.round(1).tolist()],color='navy',fmt_label=lambda lab: (lab+'\n', dict(va='center',color='navy')),zorder=3) 

ax.set_axis_off()
```

![BZ](BZ.png)

Interactively select bandstructure path by clicking on high symmetry points on plot!

![KP](KP.png)

Apply operations on POSCAR and simultaneously view using plotly's `FigureWidget` in Jupyterlab side by side.

![snip](op.png)


More coming soon!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/massgh/ipyvasp",
    "name": "ipyvasp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Jupyter, Widgets, IPython, VASP, DFT",
    "author": "Abdul Saboor",
    "author_email": "mass_qau@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/1d/9d/dfc18a77da948e397a9aba2564aa976f74ea8b1ffb0af922ee79bede0642/ipyvasp-0.9.89.tar.gz",
    "platform": null,
    "description": "\r\n# ipyvasp\r\n\r\nAn VASP-based DFT pre and post processing tool.\r\n\r\n## Install\r\nCurrently the package is being built and not stable. If you want to use development version, install this way:(recommended to install in a virtual environment)\r\n```\r\ngit clone https://github.com/massgh/ipyvasp.git\r\ncd ipyvasp\r\npip install -e .\r\n```\r\n\r\n## Showcase Examples\r\nPlot 2D BZ layer on top of 3D!\r\n\r\n```python\r\nimport ipyvasp as ipv\r\npos =  ipv.POSCAR('FCC POSACR FILE').set_zdir([1,1,1])\r\nax = pos.splot_bz(vectors = None,color='skyblue',lw=0.2,alpha=0.2,fill=True)\r\n\r\nkpts = [[0,-1/2,0],[0,0,0]]\r\npos.splot_kpath(kpts,labels=[str(k) for k in kpts],zorder=-1) # At 3D BZ\r\n\r\npos2 = pos.transform(lambda a,b,c: (a-c, b-c, a+b+c)) # 111 plane\r\npos2.splot_bz('xy',ax=ax,zoffset=0.15,vectors=None,color='navy')\r\n\r\nkp2 = pos.bz.map_kpoints(pos2.bz, kpts)\r\npos2.splot_kpath(kp2,labels=[str(k) for k in kp2.round(1).tolist()],color='navy',fmt_label=lambda lab: (lab+'\\n', dict(va='center',color='navy')),zorder=3) \r\n\r\nax.set_axis_off()\r\n```\r\n\r\n![BZ](BZ.png)\r\n\r\nInteractively select bandstructure path by clicking on high symmetry points on plot!\r\n\r\n![KP](KP.png)\r\n\r\nApply operations on POSCAR and simultaneously view using plotly's `FigureWidget` in Jupyterlab side by side.\r\n\r\n![snip](op.png)\r\n\r\n\r\nMore coming soon!\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A processing tool for VASP DFT input/output processing in Jupyter Notebook.",
    "version": "0.9.89",
    "project_urls": {
        "Bug Tracker": "https://github.com/massgh/ipyvasp/issues",
        "Homepage": "https://github.com/massgh/ipyvasp"
    },
    "split_keywords": [
        "jupyter",
        " widgets",
        " ipython",
        " vasp",
        " dft"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e1567d4c415981103853592be2df5bd138d6b4619a9376d9c6b77a5a4e48c5bf",
                "md5": "3c77a05ea6e0c6836a9284e0ee0d5741",
                "sha256": "21cd842e70bc59e9545d5ff4dcbe8e49bbffd3c0bc2c3f60d02c888e06f42caa"
            },
            "downloads": -1,
            "filename": "ipyvasp-0.9.89-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3c77a05ea6e0c6836a9284e0ee0d5741",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.8",
            "size": 141879,
            "upload_time": "2024-12-02T02:13:50",
            "upload_time_iso_8601": "2024-12-02T02:13:50.013506Z",
            "url": "https://files.pythonhosted.org/packages/e1/56/7d4c415981103853592be2df5bd138d6b4619a9376d9c6b77a5a4e48c5bf/ipyvasp-0.9.89-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1d9ddfc18a77da948e397a9aba2564aa976f74ea8b1ffb0af922ee79bede0642",
                "md5": "e14f032010b0ce2d6c3e1d84a9d791d8",
                "sha256": "f31f293f1fab339efe494adbefa40ff79b6430e3f0c92402f114a2dc3553bab5"
            },
            "downloads": -1,
            "filename": "ipyvasp-0.9.89.tar.gz",
            "has_sig": false,
            "md5_digest": "e14f032010b0ce2d6c3e1d84a9d791d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 129363,
            "upload_time": "2024-12-02T02:13:51",
            "upload_time_iso_8601": "2024-12-02T02:13:51.950836Z",
            "url": "https://files.pythonhosted.org/packages/1d/9d/dfc18a77da948e397a9aba2564aa976f74ea8b1ffb0af922ee79bede0642/ipyvasp-0.9.89.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-02 02:13:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "massgh",
    "github_project": "ipyvasp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "ipyvasp"
}
        
Elapsed time: 0.39762s