itershap


Nameitershap JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/FrankvanMourik/IterSHAP
SummaryIterative feature selection method using SHAP values
upload_time2023-08-16 08:56:45
maintainer
docs_urlNone
authorFrank van Mourik
requires_python>=3.10,<3.11
licenseMIT
keywords shap feature selection explainable ai xai small datasets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # IterSHAP: Iterative feature selection using SHAP values
Author: Frank van Mourik, University of Twente

## Installation
Install via [pip](https://pypi.org/project/itershap/) using: ```pip install itershap``` (requires Python version >=3.10,<3.11).

## Usage
```py
from itershap import IterSHAP

X, y = get_data() # Replace with data location

fs = IterSHAP() # Create a IterSHAP feature selection object
fs.fit(X, y) # Execute IterSHAP on input data
X_transformed = fs.transform(X) # Only keep the via IterSHAP selected features
```

## Benefits
* Performs well on small high-dimensional datasets
* Guarantees to return a feature subset
* Model-agnostic (limited by [shap](https://github.com/slundberg/shap) supported models)
* Validated on synthesised data
* Benchmarked on [DEAP dataset](https://www.eecs.qmul.ac.uk/mmv/datasets/deap/)

## License
Available under the MIT license, which can be found [here](LICENSE.txt)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/FrankvanMourik/IterSHAP",
    "name": "itershap",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10,<3.11",
    "maintainer_email": "",
    "keywords": "SHAP,Feature Selection,Explainable AI,XAI,Small datasets",
    "author": "Frank van Mourik",
    "author_email": "f.g.vanmourik@student.utwente.nl",
    "download_url": "https://files.pythonhosted.org/packages/77/f7/252e1b7e1a3a37d6207a78d934b7f74e322e5802abbf4654ac896e05b8a8/itershap-0.1.1.tar.gz",
    "platform": null,
    "description": "# IterSHAP: Iterative feature selection using SHAP values\nAuthor: Frank van Mourik, University of Twente\n\n## Installation\nInstall via [pip](https://pypi.org/project/itershap/) using: ```pip install itershap``` (requires Python version >=3.10,<3.11).\n\n## Usage\n```py\nfrom itershap import IterSHAP\n\nX, y = get_data() # Replace with data location\n\nfs = IterSHAP() # Create a IterSHAP feature selection object\nfs.fit(X, y) # Execute IterSHAP on input data\nX_transformed = fs.transform(X) # Only keep the via IterSHAP selected features\n```\n\n## Benefits\n* Performs well on small high-dimensional datasets\n* Guarantees to return a feature subset\n* Model-agnostic (limited by [shap](https://github.com/slundberg/shap) supported models)\n* Validated on synthesised data\n* Benchmarked on [DEAP dataset](https://www.eecs.qmul.ac.uk/mmv/datasets/deap/)\n\n## License\nAvailable under the MIT license, which can be found [here](LICENSE.txt)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Iterative feature selection method using SHAP values",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/FrankvanMourik/IterSHAP",
        "Repository": "https://github.com/FrankvanMourik/IterSHAP"
    },
    "split_keywords": [
        "shap",
        "feature selection",
        "explainable ai",
        "xai",
        "small datasets"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "870b752d33bd42aa19539ed1603ea6ac91df51525691e0a391a908e63ca3cc4e",
                "md5": "1c362adf5778f288ec233a8ee5b95319",
                "sha256": "465d147f698c2473bbc4f3adcce9e910b6ad616356fe82a63e924b67bef01de6"
            },
            "downloads": -1,
            "filename": "itershap-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1c362adf5778f288ec233a8ee5b95319",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10,<3.11",
            "size": 5465,
            "upload_time": "2023-08-16T08:56:44",
            "upload_time_iso_8601": "2023-08-16T08:56:44.112243Z",
            "url": "https://files.pythonhosted.org/packages/87/0b/752d33bd42aa19539ed1603ea6ac91df51525691e0a391a908e63ca3cc4e/itershap-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "77f7252e1b7e1a3a37d6207a78d934b7f74e322e5802abbf4654ac896e05b8a8",
                "md5": "52dbf62b1dfbf7a1c6f1bbb56c228cb7",
                "sha256": "5c64cd985ac69b7d3a61502c199aec1ab821c1b74a72272cb2708b4ad0ba8b4a"
            },
            "downloads": -1,
            "filename": "itershap-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "52dbf62b1dfbf7a1c6f1bbb56c228cb7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10,<3.11",
            "size": 4841,
            "upload_time": "2023-08-16T08:56:45",
            "upload_time_iso_8601": "2023-08-16T08:56:45.722770Z",
            "url": "https://files.pythonhosted.org/packages/77/f7/252e1b7e1a3a37d6207a78d934b7f74e322e5802abbf4654ac896e05b8a8/itershap-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-16 08:56:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FrankvanMourik",
    "github_project": "IterSHAP",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "itershap"
}
        
Elapsed time: 0.11263s