Name | jellyml JSON |
Version | 1.0.0 JSON |
download | |
home_page | |
Summary | A tool/library for embeding a snapshot of your code into a pytorch model file |
upload_time | 2023-02-01 16:20:25 |
maintainer | |
docs_url | None |
author | |
requires_python | |
license | |
keywords | pytorch jellyml model code snapshot embed library tool |
VCS | |
bugtrack_url | |
requirements | No requirements were recorded. |
Travis-CI | No Travis. |
coveralls test coverage | No coveralls. |
# JellyMl JellyML is an open-source tool (python API and command line) for effortlessly embedding a snapshot of your code | into a checkpoint of a pytorch model. Learn more at [jellyml.com](jellyml.com) ## Structure of the jellyml repository (Note that the jellyml repository is a monorepo. If you are reading this from the python package source code, go to github.com/mmulet/jellyml to see the whole repository) - jellyml is the source for the python package - jellyml-lightning is the source for pytorch lightning plugin - client is the source for the website - dev_server is the source for the development server of the website ## Build ### jellyml 1. Make a venv ```sh python3 -m venv venv # activate the venv ( depends on your shell and OS) # see https://docs.python.org/3/library/venv.html # bash source venv/bin/activate ``` 2. Install build ```sh pip install build ``` 3. Build the package ```sh cd jellyml python -m build pip install dist/jellyml-0.0.1-py3-none-any.whl ``` ### jellyml-lightning 1. Follow the directions for building and installing jellyml. jellyml is a dependency of jellyml-lightning. 2. Build the package ```sh cd jellyml-lightning python -m build pip install dist/jellyml-lightning-0.0.1-py3-none-any.whl ``` ### Website #### Build the website ```sh cd client npm install . cd ../dev_server npm install . npm run build ``` #### Dev the website ```sh cd client npm install . cd ../dev_server npm install . npm run build ``` ## Tests Located in the source files in src/jellyml. Have the prefix test\_. Run them as a module ```sh cd src; python3 -m jellyml.test_all ```
{ "_id": null, "home_page": "", "name": "jellyml", "maintainer": "", "docs_url": null, "requires_python": "", "maintainer_email": "", "keywords": "pytorch,jellyml,model,code,snapshot,embed,library,tool", "author": "", "author_email": "Michael Mulet <mike@lfds.io>", "download_url": "https://files.pythonhosted.org/packages/c7/96/6a5abcb26420378286b2a080dc53499a1cd65195438e56d90154abd82f5d/jellyml-1.0.0.tar.gz", "platform": null, "description": "# JellyMl\n\nJellyML is an open-source tool (python API and command line) for effortlessly embedding a snapshot of your code \n | into a checkpoint of a pytorch model.\nLearn more at [jellyml.com](jellyml.com)\n\n## Structure of the jellyml repository\n(Note that the jellyml repository is a monorepo. If you are\nreading this from the python package source code,\ngo to github.com/mmulet/jellyml to see the whole repository)\n\n- jellyml is the source for the python package\n- jellyml-lightning is the source for pytorch lightning plugin\n- client is the source for the website\n- dev_server is the source for the development server of the website\n\n## Build\n\n### jellyml\n\n1. Make a venv\n```sh\npython3 -m venv venv\n# activate the venv ( depends on your shell and OS)\n# see https://docs.python.org/3/library/venv.html\n# bash\nsource venv/bin/activate\n```\n2. Install build\n```sh\npip install build\n```\n3. Build the package\n```sh\ncd jellyml\npython -m build\npip install dist/jellyml-0.0.1-py3-none-any.whl\n```\n\n### jellyml-lightning\n1. Follow the directions for building and installing jellyml.\n jellyml is a dependency of jellyml-lightning.\n2. Build the package\n```sh\ncd jellyml-lightning\npython -m build\npip install dist/jellyml-lightning-0.0.1-py3-none-any.whl\n```\n\n### Website\n\n#### Build the website\n\n```sh\ncd client\nnpm install .\ncd ../dev_server\nnpm install .\nnpm run build\n```\n\n#### Dev the website\n\n```sh\ncd client\nnpm install .\ncd ../dev_server\nnpm install .\nnpm run build\n```\n\n## Tests\n\nLocated in the source files in src/jellyml. Have the prefix test\\_.\nRun them as a module\n\n```sh\ncd src;\npython3 -m jellyml.test_all\n```\n", "bugtrack_url": null, "license": "", "summary": "A tool/library for embeding a snapshot of your code into a pytorch model file", "version": "1.0.0", "split_keywords": [ "pytorch", "jellyml", "model", "code", "snapshot", "embed", "library", "tool" ], "urls": [ { "comment_text": "", "digests": { "blake2b_256": "fabbc36b59b3a967bfdc019b11b2055ba3aed25f2c63c33675ec8892fdd6cba2", "md5": "b148c063bf45a0dfa0121541bd2f8d41", "sha256": "5a98445e5bef735834545867ade70364341ec890fa5a53d4b98b20eb2cdfdfa9" }, "downloads": -1, "filename": "jellyml-1.0.0-py3-none-any.whl", "has_sig": false, "md5_digest": "b148c063bf45a0dfa0121541bd2f8d41", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 113613, "upload_time": "2023-02-01T16:20:24", "upload_time_iso_8601": "2023-02-01T16:20:24.385146Z", "url": "https://files.pythonhosted.org/packages/fa/bb/c36b59b3a967bfdc019b11b2055ba3aed25f2c63c33675ec8892fdd6cba2/jellyml-1.0.0-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "blake2b_256": "c7966a5abcb26420378286b2a080dc53499a1cd65195438e56d90154abd82f5d", "md5": "c8857e91d1cf8f50af93121c02b5fa2c", "sha256": "8ca4ae916d84e27d848e2d158862487bdc8a98b14ad2bebf80ef283582878771" }, "downloads": -1, "filename": "jellyml-1.0.0.tar.gz", "has_sig": false, "md5_digest": "c8857e91d1cf8f50af93121c02b5fa2c", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 43696, "upload_time": "2023-02-01T16:20:25", "upload_time_iso_8601": "2023-02-01T16:20:25.754275Z", "url": "https://files.pythonhosted.org/packages/c7/96/6a5abcb26420378286b2a080dc53499a1cd65195438e56d90154abd82f5d/jellyml-1.0.0.tar.gz", "yanked": false, "yanked_reason": null } ], "upload_time": "2023-02-01 16:20:25", "github": false, "gitlab": false, "bitbucket": false, "lcname": "jellyml" }