jepa


Namejepa JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/dipsivenkatesh/jepa
SummaryJoint-Embedding Predictive Architecture for Self-Supervised Learning
upload_time2025-07-29 08:54:06
maintainerNone
docs_urlNone
authorDilip Venkatesh
requires_python>=3.8
licenseMIT License Copyright (c) 2025 dipsivenkatesh Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords self-supervised-learning representation-learning deep-learning pytorch jepa joint-embedding predictive-architecture
VCS
bugtrack_url
requirements torch numpy tqdm transformers datasets scikit-learn wandb tensorboard pyyaml matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # JEPA

A JEPA (Joint Embedding Predictive Architecture) training framework to train JEPAs.

## Features
- Modular model, data, trainer structure
- Easy to extend with new encoders/predictors
- CLI-based training and evaluation

## Getting Started
```bash
pip install -e .
jepa-train
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dipsivenkatesh/jepa",
    "name": "jepa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Dilip Venkatesh <your.email@example.com>",
    "keywords": "self-supervised-learning, representation-learning, deep-learning, pytorch, jepa, joint-embedding, predictive-architecture",
    "author": "Dilip Venkatesh",
    "author_email": "Dilip Venkatesh <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/a4/29/9df449c36877107b131c087eb5a9ca2aee483eaf5d87a4c104340dec3341/jepa-0.1.0.tar.gz",
    "platform": null,
    "description": "# JEPA\n\nA JEPA (Joint Embedding Predictive Architecture) training framework to train JEPAs.\n\n## Features\n- Modular model, data, trainer structure\n- Easy to extend with new encoders/predictors\n- CLI-based training and evaluation\n\n## Getting Started\n```bash\npip install -e .\njepa-train\n```\n",
    "bugtrack_url": null,
    "license": "MIT License\n        \n        Copyright (c) 2025 dipsivenkatesh\n        \n        Permission is hereby granted, free of charge, to any person obtaining a copy\n        of this software and associated documentation files (the \"Software\"), to deal\n        in the Software without restriction, including without limitation the rights\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n        copies of the Software, and to permit persons to whom the Software is\n        furnished to do so, subject to the following conditions:\n        \n        The above copyright notice and this permission notice shall be included in all\n        copies or substantial portions of the Software.\n        \n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n        SOFTWARE.\n        ",
    "summary": "Joint-Embedding Predictive Architecture for Self-Supervised Learning",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/dipsivenkatesh/jepa/issues",
        "Changelog": "https://github.com/dipsivenkatesh/jepa/blob/main/CHANGELOG.md",
        "Documentation": "https://jepa.readthedocs.io/",
        "Homepage": "https://github.com/dipsivenkatesh/jepa",
        "Repository": "https://github.com/dipsivenkatesh/jepa.git"
    },
    "split_keywords": [
        "self-supervised-learning",
        " representation-learning",
        " deep-learning",
        " pytorch",
        " jepa",
        " joint-embedding",
        " predictive-architecture"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b768f112f919976a249a3c70d98c6157b5c42a21e2f09e44fc375b64e6275462",
                "md5": "ff3350771b7bc82fd7c2d267873a5112",
                "sha256": "bb78e6fd2b02d70ed3b511499bab9c53befa15e401006f2e583a5a10bcc13cd4"
            },
            "downloads": -1,
            "filename": "jepa-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ff3350771b7bc82fd7c2d267873a5112",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 58787,
            "upload_time": "2025-07-29T08:54:04",
            "upload_time_iso_8601": "2025-07-29T08:54:04.974200Z",
            "url": "https://files.pythonhosted.org/packages/b7/68/f112f919976a249a3c70d98c6157b5c42a21e2f09e44fc375b64e6275462/jepa-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a4299df449c36877107b131c087eb5a9ca2aee483eaf5d87a4c104340dec3341",
                "md5": "a941a8aa66ba6bdfbafd05427d82167b",
                "sha256": "d6f7d2d12beef46d2e278ab3bdd0a88af70b476de0167fa2d6f7341d8d035982"
            },
            "downloads": -1,
            "filename": "jepa-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a941a8aa66ba6bdfbafd05427d82167b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 128503,
            "upload_time": "2025-07-29T08:54:06",
            "upload_time_iso_8601": "2025-07-29T08:54:06.612884Z",
            "url": "https://files.pythonhosted.org/packages/a4/29/9df449c36877107b131c087eb5a9ca2aee483eaf5d87a4c104340dec3341/jepa-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-29 08:54:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dipsivenkatesh",
    "github_project": "jepa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.12.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    ">=",
                    "4.64.0"
                ]
            ]
        },
        {
            "name": "transformers",
            "specs": [
                [
                    ">=",
                    "4.20.0"
                ]
            ]
        },
        {
            "name": "datasets",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "wandb",
            "specs": [
                [
                    ">=",
                    "0.13.0"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    ">=",
                    "2.9.0"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    ">=",
                    "6.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        }
    ],
    "test_requirements": [
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "pytest-xdist",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "coverage",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "pytest-mock",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "responses",
            "specs": [
                [
                    ">=",
                    "0.20.0"
                ]
            ]
        },
        {
            "name": "pytest-benchmark",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "memory-profiler",
            "specs": [
                [
                    ">=",
                    "0.60.0"
                ]
            ]
        },
        {
            "name": "pytest-html",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "pytest-json-report",
            "specs": [
                [
                    ">=",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    ">=",
                    "22.0.0"
                ]
            ]
        },
        {
            "name": "isort",
            "specs": [
                [
                    ">=",
                    "5.0.0"
                ]
            ]
        },
        {
            "name": "wandb",
            "specs": [
                [
                    ">=",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    ">=",
                    "2.8.0"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.10.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.20.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    ">=",
                    "8.0.0"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "ipython",
            "specs": [
                [
                    ">=",
                    "7.0.0"
                ]
            ]
        },
        {
            "name": "jupyter",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        }
    ],
    "lcname": "jepa"
}
        
Elapsed time: 2.16888s