kitsune


Namekitsune JSON
Version 1.3.5 PyPI version JSON
download
home_pagehttps://github.com/natapol/kitsune
SummaryA toolkit for evaluation of the lenght of k-mer in a given genome dataset for alignment-free phylogenimic analysis
upload_time2024-05-16 15:38:29
maintainerNone
docs_urlNone
authorNatapol Pornputtapong
requires_python>=3.5
licenseGPL-3.0 License
keywords bioinformatics kitsune
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # KITSUNE: K-mer-length Iterative Selection for UNbiased Ecophylogenomics

<img src="https://github.com/natapol/kitsune/blob/master/logoKITSUNE.png" width="40%">

[![PyPI version](https://badge.fury.io/py/kitsune.svg)](https://badge.fury.io/py/kitsune)
![Upload Python Package](https://github.com/natapol/kitsune/workflows/Upload%20Python%20Package/badge.svg)

KITSUNE is a toolkit for evaluation of the length of k-mer in a given genome dataset for alignment-free phylogenimic analysis.

K-mer based approach is simple and fast yet has been widely used in many applications including biological sequence comparison. However, selection of an appropriate k-mer length to obtain a good information content for comparison is normally overlooked. The optimum k-mer length is a prerequsite to obtain biological meaningful genomic distance for assesment of phylogenetic relationships. Therefore, we have developed KITSUNE to aid k-mer length selection process in a systematic way, based on a three-steps aproach described in [Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer](https://doi.org/10.1038/srep40712).

KITSUNE will calculte the three matrices across considered k-mer range:

1. Cumulative Relative Entropy (CRE)
1. Average number of Common Features (ACF)
1. Observed Common Features (OCF)

Moreover, KITSUNE also provides various genomic distance calculations from the k-mer frequency vectors that can be used for species identification or phylogenomic tree construction.  

> **Note**:
> If you use KITSUNE in your research, please cite:
> [KITSUNE: A Tool for Identifying Empirically Optimal K-mer Length for Alignment-free Phylogenomic Analysis](https://doi.org/10.3389/fbioe.2020.556413)


## Installation

Kitsune is developed under python version 3 environment. We recommend users use python >= v3.5.

Requirement packages: scipy >= 0.18.1, numpy >= 1.1.0, tqdm >= 4.32

Kitsune also requires [Jellyfish](https://doi.org/10.1093/bioinformatics/btr011) for k-mer counting as external software dependency. Thus, you need to install it before running the tool: [https://github.com/gmarcais/Jellyfish](https://github.com/gmarcais/Jellyfish)

### Install with pip

```bash
pip install kitsune
```

### Install from source

```bash
# Clone the GitHub repository
git clone https://github.com/natapol/kitsune

# Move to the kitsune folder
cd kitsune/

# Install
python setup.py install
```

## Usage

### Overview of kitsune

command for listing help

```bash
$ kitsune --help

usage: kitsune <command> [<args>]

Available commands:
  acf      Compute average number of common features between signatures
  cre      Compute cumulative relative entropy
  dmatrix  Compute distance matrix
  kopt     Compute recommended choice (optimal) of kmer within a given kmer interval for a set of genomes using the cre, acf and ofc
  ofc      Compute observed feature frequencies

Use --help in conjunction with one of the commands above for a list of available options (e.g. kitsune acf --help)
```

### Calculate CRE, ACF, and OFC value for specific kmer

Kitsune provides three commands to calculate an appropiate k-mer using CRE, ACF, and OCF:

#### Calculate CRE

```bash
$ kitsune cre -h

usage: kitsune (cre) [-h] --filename FILENAME [--fast] [--canonical] -ke KEND
                     [-kf KFROM] [-t THREAD] [-o OUTPUT]

Calculate k-mer from cumulative relative entropy of all genomes

optional arguments:
  -h, --help            show this help message and exit
  --filename FILENAME   A genome file in fasta format (default: None)
  --fast                Jellyfish one-pass calculation (faster) (default:
                        False)
  --canonical           Jellyfish count only canonical mer (default: False)
  -ke KEND, --kend KEND
                        Last k-mer (default: None)
  -kf KFROM, --kfrom KFROM
                        Calculate from k-mer (default: 4)
  -t THREAD, --thread THREAD
  -o OUTPUT, --output OUTPUT
                        Output filename (default: None)
```

#### Calculate ACF

```bash
$ kitsune acf -h

usage: kitsune (acf) [-h] --filenames FILENAMES [FILENAMES ...] [--fast]
                     [--canonical] -k KMERS [KMERS ...] [-t THREAD]
                     [-o OUTPUT]

Calculate an average number of common features pairwise between one genome
against others

optional arguments:
  -h, --help            show this help message and exit
  --filenames FILENAMES [FILENAMES ...]
                        Genome files in fasta format (default: None)
  --fast                Jellyfish one-pass calculation (faster) (default:
                        False)
  --canonical           Jellyfish count only canonical mer (default: False)
  -k KMERS [KMERS ...], --kmers KMERS [KMERS ...]
                        Have to state before (default: None)
  -t THREAD, --thread THREAD
  -o OUTPUT, --output OUTPUT
                        Output filename (default: None)
```

#### Calculate OFC

```bash
$ kitsune ofc -h

usage: kitsune (ofc) [-h] --filenames FILENAMES [FILENAMES ...] [--fast]
                     [--canonical] -k KMERS [KMERS ...] [-t THREAD]
                     [-o OUTPUT]

Calculate an observe feature frequency

optional arguments:
  -h, --help            show this help message and exit
  --filenames FILENAMES [FILENAMES ...]
                        Genome files in fasta format (default: None)
  --fast                Jellyfish one-pass calculation (faster) (default:
                        False)
  --canonical           Jellyfish count only canonical mer (default: False)
  -k KMERS [KMERS ...], --kmers KMERS [KMERS ...]
  -t THREAD, --thread THREAD
  -o OUTPUT, --output OUTPUT
                        Output filename (default: None)
```

#### General Example

```bash
kitsune cre --filename genome1.fna -kf 5 -ke 10
kitsune acf --filenames genome1.fna genome2.fna -k 5
kitsune ofc --filenames genome_fasta/* -k 5
```

### Calculate genomic distance at specific k-mer from kmer frequency vectors of two of genomes

Kitsune provides a commands to calculate genomic distance using different distance estimation method. Users can assess the impact of a selected k-mer length on the genomic distnace of choice below.

distance option        | name
---------------------- | ----
braycurtis             | Bray-Curtis distance
canberra               | Canberra distance
chebyshev              | Chebyshev distance
cityblock              | City Block (Manhattan) distance
correlation            | Correlation distance
cosine                 | Cosine distance
euclidean              | Euclidean distance
jensenshannon          | Jensen-Shannon distance
sqeuclidean            | Squared Euclidean distance
dice                   | Dice dissimilarity
hamming                | Hamming distance
jaccard                | Jaccard-Needham dissimilarity
kulsinski              | Kulsinski dissimilarity
rogerstanimoto         | Rogers-Tanimoto dissimilarity
russellrao             | Russell-Rao dissimilarity
sokalmichener          | Sokal-Michener dissimilarity
sokalsneath            | Sokal-Sneath dissimilarity
yule                   | Yule dissimilarity
mash                   | MASH distance
jsmash                 | MASH Jensen-Shannon distance
jaccarddistp           | Jaccard-Needham dissimilarity Probability
euclidean_of_frequency | Euclidean distance of Frequency


Kitsune provides a choice of distance transformation proposed by [Fan et.al](https://doi.org/10.1186/s12864-015-1647-5).

### Calculate a distance matrix

```bash
$ kitsune dmatrix -h

usage: kitsune (dmatrix) [-h] [--filenames [FILENAMES [FILENAMES ...]]]
                         [--fast] [--canonical] -k KMER [-i INPUT] [-o OUTPUT]
                         [-t THREAD] [--transformed]
                         [-d {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}]
                         [-f FORMAT]

Calculate a distance matrix

optional arguments:
  -h, --help            show this help message and exit
  --filenames [FILENAMES [FILENAMES ...]]
                        Genome files in fasta format (default: None)
  --fast                Jellyfish one-pass calculation (faster) (default:
                        False)
  --canonical           Jellyfish count only canonical mer (default: False)
  -k KMER, --kmer KMER
  -i INPUT, --input INPUT
                        List of genome files in txt (default: None)
  -o OUTPUT, --output OUTPUT
                        Output filename (default: None)
  -t THREAD, --thread THREAD
  --transformed
  -d {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}, --distance {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}
  -f FORMAT, --format FORMAT
```

Example of choosing distance option:

```bash
kitsune dmatrix --filenames genome1.fna genome2.fna -k 11 -d jaccard --canonical --fast -o output.txt
kitsune dmatrix --filenames genome1.fna genome2.fna -k 11 -d hensenshannon --canonical --fast -o output.txt
```

### Find optimum k-mer from a given set of genomes

Kitsune provides a wrap-up comand to find optimum k-mer length for a given set of genome within a given kmer interval.

```bash
$ kitsune kopt -h

usage: kitsune (kopt) [-h] [--acf-cutoff ACF_CUTOFF] [--canonical]
                      [--closely-related] [--cre-cutoff CRE_CUTOFF] [--fast]
                      --filenames FILENAMES [--hashsize HASHSIZE]
                      [--in-memory] [--k-min K_MIN] --k-max K_MAX
                      [--lower LOWER] [--nproc NPROC] [--output OUTPUT]
                      [--threads THREADS]

Optimal kmer size selection for a set of genomes using Average number of
Common Features (ACF), Cumulative Relative Entropy (CRE), and Observed Common
Features (OCF). Example: kitsune kopt --filenames genomeList.txt --k-min 4
--k-max 12 --canonical --fast

optional arguments:
  -h, --help            show this help message and exit
  --acf-cutoff ACF_CUTOFF
                        Cutoff to use in selecting kmers whose ACFs are >=
                        (cutoff * max(ACF)) (default: 0.1)
  --canonical           Jellyfish count only canonical kmers (default: False)
  --closely-related     Use in case of closely related genomes (default:
                        False)
  --cre-cutoff CRE_CUTOFF
                        Cutoff to use in selecting kmers whose CREs are <=
                        (cutoff * max(CRE)) (default: 0.1)
  --fast                Jellyfish one-pass calculation (faster) (default:
                        False)
  --filenames FILENAMES
                        Path to the file with the list of genome files paths.
                        There should be at list 2 input genomes (default:
                        None)
  --hashsize HASHSIZE   Jellyfish initial hash size (default: 100M)
  --in-memory           Keep Jellyfish counts in memory (default: False)
  --k-min K_MIN         Minimum kmer size (default: 4)
  --k-max K_MAX         Maximum kmer size (default: None)
  --lower LOWER         Do not let Jellyfish output kmers with count < --lower
                        (default: 1)
  --nproc NPROC         Maximum number of CPUs to make it parallel (default:
                        1)
  --output OUTPUT       Path to the output file (default: None)
  --threads THREADS     Maximum number of threads for Jellyfish (default: 1)
```

### Example dataset

First download the example files. [Download](examples/example_viral_genomes.zip)

```bash
kitsune kopt --filenames genome_list --k-min 6 --k-max 21 --canonical --fast --threads 4 --nproc 2 --output out.txt
```

> :warning: _Please be aware that this command will use big computational resources when large number of genomes and/or large genome size are used as the input._

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/natapol/kitsune",
    "name": "kitsune",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": null,
    "keywords": "bioinformatics, kitsune",
    "author": "Natapol Pornputtapong",
    "author_email": "natapol.por@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f9/f8/bd2f58f41fabbd6d5f1394742523b60220171e52a9d50f2943b0ee41ad3f/kitsune-1.3.5.tar.gz",
    "platform": null,
    "description": "# KITSUNE: K-mer-length Iterative Selection for UNbiased Ecophylogenomics\n\n<img src=\"https://github.com/natapol/kitsune/blob/master/logoKITSUNE.png\" width=\"40%\">\n\n[![PyPI version](https://badge.fury.io/py/kitsune.svg)](https://badge.fury.io/py/kitsune)\n![Upload Python Package](https://github.com/natapol/kitsune/workflows/Upload%20Python%20Package/badge.svg)\n\nKITSUNE is a toolkit for evaluation of the length of k-mer in a given genome dataset for alignment-free phylogenimic analysis.\n\nK-mer based approach is simple and fast yet has been widely used in many applications including biological sequence comparison. However, selection of an appropriate k-mer length to obtain a good information content for comparison is normally overlooked. The optimum k-mer length is a prerequsite to obtain biological meaningful genomic distance for assesment of phylogenetic relationships. Therefore, we have developed KITSUNE to aid k-mer length selection process in a systematic way, based on a three-steps aproach described in [Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer](https://doi.org/10.1038/srep40712).\n\nKITSUNE will calculte the three matrices across considered k-mer range:\n\n1. Cumulative Relative Entropy (CRE)\n1. Average number of Common Features (ACF)\n1. Observed Common Features (OCF)\n\nMoreover, KITSUNE also provides various genomic distance calculations from the k-mer frequency vectors that can be used for species identification or phylogenomic tree construction.  \n\n> **Note**:\n> If you use KITSUNE in your research, please cite:\n> [KITSUNE: A Tool for Identifying Empirically Optimal K-mer Length for Alignment-free Phylogenomic Analysis](https://doi.org/10.3389/fbioe.2020.556413)\n\n\n## Installation\n\nKitsune is developed under python version 3 environment. We recommend users use python >= v3.5.\n\nRequirement packages: scipy >= 0.18.1, numpy >= 1.1.0, tqdm >= 4.32\n\nKitsune also requires [Jellyfish](https://doi.org/10.1093/bioinformatics/btr011) for k-mer counting as external software dependency. Thus, you need to install it before running the tool: [https://github.com/gmarcais/Jellyfish](https://github.com/gmarcais/Jellyfish)\n\n### Install with pip\n\n```bash\npip install kitsune\n```\n\n### Install from source\n\n```bash\n# Clone the GitHub repository\ngit clone https://github.com/natapol/kitsune\n\n# Move to the kitsune folder\ncd kitsune/\n\n# Install\npython setup.py install\n```\n\n## Usage\n\n### Overview of kitsune\n\ncommand for listing help\n\n```bash\n$ kitsune --help\n\nusage: kitsune <command> [<args>]\n\nAvailable commands:\n  acf      Compute average number of common features between signatures\n  cre      Compute cumulative relative entropy\n  dmatrix  Compute distance matrix\n  kopt     Compute recommended choice (optimal) of kmer within a given kmer interval for a set of genomes using the cre, acf and ofc\n  ofc      Compute observed feature frequencies\n\nUse --help in conjunction with one of the commands above for a list of available options (e.g. kitsune acf --help)\n```\n\n### Calculate CRE, ACF, and OFC value for specific kmer\n\nKitsune provides three commands to calculate an appropiate k-mer using CRE, ACF, and OCF:\n\n#### Calculate CRE\n\n```bash\n$ kitsune cre -h\n\nusage: kitsune (cre) [-h] --filename FILENAME [--fast] [--canonical] -ke KEND\n                     [-kf KFROM] [-t THREAD] [-o OUTPUT]\n\nCalculate k-mer from cumulative relative entropy of all genomes\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --filename FILENAME   A genome file in fasta format (default: None)\n  --fast                Jellyfish one-pass calculation (faster) (default:\n                        False)\n  --canonical           Jellyfish count only canonical mer (default: False)\n  -ke KEND, --kend KEND\n                        Last k-mer (default: None)\n  -kf KFROM, --kfrom KFROM\n                        Calculate from k-mer (default: 4)\n  -t THREAD, --thread THREAD\n  -o OUTPUT, --output OUTPUT\n                        Output filename (default: None)\n```\n\n#### Calculate ACF\n\n```bash\n$ kitsune acf -h\n\nusage: kitsune (acf) [-h] --filenames FILENAMES [FILENAMES ...] [--fast]\n                     [--canonical] -k KMERS [KMERS ...] [-t THREAD]\n                     [-o OUTPUT]\n\nCalculate an average number of common features pairwise between one genome\nagainst others\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --filenames FILENAMES [FILENAMES ...]\n                        Genome files in fasta format (default: None)\n  --fast                Jellyfish one-pass calculation (faster) (default:\n                        False)\n  --canonical           Jellyfish count only canonical mer (default: False)\n  -k KMERS [KMERS ...], --kmers KMERS [KMERS ...]\n                        Have to state before (default: None)\n  -t THREAD, --thread THREAD\n  -o OUTPUT, --output OUTPUT\n                        Output filename (default: None)\n```\n\n#### Calculate OFC\n\n```bash\n$ kitsune ofc -h\n\nusage: kitsune (ofc) [-h] --filenames FILENAMES [FILENAMES ...] [--fast]\n                     [--canonical] -k KMERS [KMERS ...] [-t THREAD]\n                     [-o OUTPUT]\n\nCalculate an observe feature frequency\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --filenames FILENAMES [FILENAMES ...]\n                        Genome files in fasta format (default: None)\n  --fast                Jellyfish one-pass calculation (faster) (default:\n                        False)\n  --canonical           Jellyfish count only canonical mer (default: False)\n  -k KMERS [KMERS ...], --kmers KMERS [KMERS ...]\n  -t THREAD, --thread THREAD\n  -o OUTPUT, --output OUTPUT\n                        Output filename (default: None)\n```\n\n#### General Example\n\n```bash\nkitsune cre --filename genome1.fna -kf 5 -ke 10\nkitsune acf --filenames genome1.fna genome2.fna -k 5\nkitsune ofc --filenames genome_fasta/* -k 5\n```\n\n### Calculate genomic distance at specific k-mer from kmer frequency vectors of two of genomes\n\nKitsune provides a commands to calculate genomic distance using different distance estimation method. Users can assess the impact of a selected k-mer length on the genomic distnace of choice below.\n\ndistance option        | name\n---------------------- | ----\nbraycurtis             | Bray-Curtis distance\ncanberra               | Canberra distance\nchebyshev              | Chebyshev distance\ncityblock              | City Block (Manhattan) distance\ncorrelation            | Correlation distance\ncosine                 | Cosine distance\neuclidean              | Euclidean distance\njensenshannon          | Jensen-Shannon distance\nsqeuclidean            | Squared Euclidean distance\ndice                   | Dice dissimilarity\nhamming                | Hamming distance\njaccard                | Jaccard-Needham dissimilarity\nkulsinski              | Kulsinski dissimilarity\nrogerstanimoto         | Rogers-Tanimoto dissimilarity\nrussellrao             | Russell-Rao dissimilarity\nsokalmichener          | Sokal-Michener dissimilarity\nsokalsneath            | Sokal-Sneath dissimilarity\nyule                   | Yule dissimilarity\nmash                   | MASH distance\njsmash                 | MASH Jensen-Shannon distance\njaccarddistp           | Jaccard-Needham dissimilarity Probability\neuclidean_of_frequency | Euclidean distance of Frequency\n\n\nKitsune provides a choice of distance transformation proposed by [Fan et.al](https://doi.org/10.1186/s12864-015-1647-5).\n\n### Calculate a distance matrix\n\n```bash\n$ kitsune dmatrix -h\n\nusage: kitsune (dmatrix) [-h] [--filenames [FILENAMES [FILENAMES ...]]]\n                         [--fast] [--canonical] -k KMER [-i INPUT] [-o OUTPUT]\n                         [-t THREAD] [--transformed]\n                         [-d {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}]\n                         [-f FORMAT]\n\nCalculate a distance matrix\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --filenames [FILENAMES [FILENAMES ...]]\n                        Genome files in fasta format (default: None)\n  --fast                Jellyfish one-pass calculation (faster) (default:\n                        False)\n  --canonical           Jellyfish count only canonical mer (default: False)\n  -k KMER, --kmer KMER\n  -i INPUT, --input INPUT\n                        List of genome files in txt (default: None)\n  -o OUTPUT, --output OUTPUT\n                        Output filename (default: None)\n  -t THREAD, --thread THREAD\n  --transformed\n  -d {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}, --distance {braycurtis,canberra,jsmash,chebyshev,cityblock,correlation,cosine,dice,euclidean,hamming,jaccard,kulsinsk,matching,rogerstanimoto,russellrao,sokalmichener,sokalsneath,sqeuclidean,yule,mash,jaccarddistp}\n  -f FORMAT, --format FORMAT\n```\n\nExample of choosing distance option:\n\n```bash\nkitsune dmatrix --filenames genome1.fna genome2.fna -k 11 -d jaccard --canonical --fast -o output.txt\nkitsune dmatrix --filenames genome1.fna genome2.fna -k 11 -d hensenshannon --canonical --fast -o output.txt\n```\n\n### Find optimum k-mer from a given set of genomes\n\nKitsune provides a wrap-up comand to find optimum k-mer length for a given set of genome within a given kmer interval.\n\n```bash\n$ kitsune kopt -h\n\nusage: kitsune (kopt) [-h] [--acf-cutoff ACF_CUTOFF] [--canonical]\n                      [--closely-related] [--cre-cutoff CRE_CUTOFF] [--fast]\n                      --filenames FILENAMES [--hashsize HASHSIZE]\n                      [--in-memory] [--k-min K_MIN] --k-max K_MAX\n                      [--lower LOWER] [--nproc NPROC] [--output OUTPUT]\n                      [--threads THREADS]\n\nOptimal kmer size selection for a set of genomes using Average number of\nCommon Features (ACF), Cumulative Relative Entropy (CRE), and Observed Common\nFeatures (OCF). Example: kitsune kopt --filenames genomeList.txt --k-min 4\n--k-max 12 --canonical --fast\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --acf-cutoff ACF_CUTOFF\n                        Cutoff to use in selecting kmers whose ACFs are >=\n                        (cutoff * max(ACF)) (default: 0.1)\n  --canonical           Jellyfish count only canonical kmers (default: False)\n  --closely-related     Use in case of closely related genomes (default:\n                        False)\n  --cre-cutoff CRE_CUTOFF\n                        Cutoff to use in selecting kmers whose CREs are <=\n                        (cutoff * max(CRE)) (default: 0.1)\n  --fast                Jellyfish one-pass calculation (faster) (default:\n                        False)\n  --filenames FILENAMES\n                        Path to the file with the list of genome files paths.\n                        There should be at list 2 input genomes (default:\n                        None)\n  --hashsize HASHSIZE   Jellyfish initial hash size (default: 100M)\n  --in-memory           Keep Jellyfish counts in memory (default: False)\n  --k-min K_MIN         Minimum kmer size (default: 4)\n  --k-max K_MAX         Maximum kmer size (default: None)\n  --lower LOWER         Do not let Jellyfish output kmers with count < --lower\n                        (default: 1)\n  --nproc NPROC         Maximum number of CPUs to make it parallel (default:\n                        1)\n  --output OUTPUT       Path to the output file (default: None)\n  --threads THREADS     Maximum number of threads for Jellyfish (default: 1)\n```\n\n### Example dataset\n\nFirst download the example files. [Download](examples/example_viral_genomes.zip)\n\n```bash\nkitsune kopt --filenames genome_list --k-min 6 --k-max 21 --canonical --fast --threads 4 --nproc 2 --output out.txt\n```\n\n> :warning: _Please be aware that this command will use big computational resources when large number of genomes and/or large genome size are used as the input._\n",
    "bugtrack_url": null,
    "license": "GPL-3.0 License",
    "summary": "A toolkit for evaluation of the lenght of k-mer in a given genome dataset for alignment-free phylogenimic analysis",
    "version": "1.3.5",
    "project_urls": {
        "Download": "https://pypi.org/project/kitsune/",
        "Homepage": "https://github.com/natapol/kitsune"
    },
    "split_keywords": [
        "bioinformatics",
        " kitsune"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f4964d37fee4d6768210903b54de2f3321c6b6e095085ff2c6613070ab14cfec",
                "md5": "1d01092bcad841b6730da126eacba1b8",
                "sha256": "0f4e182ff276a8226d0f81823e8ecccda43be0df147d7c7c9c042d9c652c83b0"
            },
            "downloads": -1,
            "filename": "kitsune-1.3.5-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d01092bcad841b6730da126eacba1b8",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.5",
            "size": 32080,
            "upload_time": "2024-05-16T15:38:27",
            "upload_time_iso_8601": "2024-05-16T15:38:27.725436Z",
            "url": "https://files.pythonhosted.org/packages/f4/96/4d37fee4d6768210903b54de2f3321c6b6e095085ff2c6613070ab14cfec/kitsune-1.3.5-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f9f8bd2f58f41fabbd6d5f1394742523b60220171e52a9d50f2943b0ee41ad3f",
                "md5": "a6b50c518c463272f1ba25e1f0d72925",
                "sha256": "73af096870a02dd6b3774578b4e3d6b86122e99a27877977045330f7a24d2e41"
            },
            "downloads": -1,
            "filename": "kitsune-1.3.5.tar.gz",
            "has_sig": false,
            "md5_digest": "a6b50c518c463272f1ba25e1f0d72925",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 31497,
            "upload_time": "2024-05-16T15:38:29",
            "upload_time_iso_8601": "2024-05-16T15:38:29.930861Z",
            "url": "https://files.pythonhosted.org/packages/f9/f8/bd2f58f41fabbd6d5f1394742523b60220171e52a9d50f2943b0ee41ad3f/kitsune-1.3.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-16 15:38:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "natapol",
    "github_project": "kitsune",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "kitsune"
}
        
Elapsed time: 0.35094s