Name | kuwahara-torch JSON |
Version |
0.0.3
JSON |
| download |
home_page | |
Summary | Kuwahara filter in PyTorch. |
upload_time | 2023-12-19 11:19:13 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.10 |
license | MIT License Copyright (c) 2023 evanarlian Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
keywords |
pytorch
shaders
image
kuwahara
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# kuwahara-torch
Kuwahara filter in PyTorch.
# Usage
See full code and images on [example](example/) dir.
```bash
pip install -U kuwahara-torch
```
# Examples
Originally kuwahara filter was used for denoising.
| Original | kuwahara | Generalized kuwahara |
|------------------------|------------------------|------------------------|
| ![](example/noisy.jpg) | ![](example/noisy_k.jpg) | ![](example/noisy_gk.jpg) |
But now it is used for artistic style.
| Original | kuwahara | Generalized kuwahara |
|------------------------|------------------------|------------------------|
| ![](example/cat.jpg) | ![](example/cat_k.jpg) | ![](example/cat_gk.jpg) |
| Original | Generalized kuwahara |
|------------------------|------------------------|
| ![](example/chinatown.jpg) | ![](example/chinatown_gk.jpg) |
# TODO
* [x] Kuwahara
* [x] Generalized kuwahara
* [ ] Anisotropic kuwahara. Idk how to tilt the kernel in pytorch. PRs are welcome.
# References
* https://en.wikipedia.org/wiki/Kuwahara_filter
* [Generalized Kuwahara paper](https://core.ac.uk/download/pdf/148194268.pdf)
* [Anisotropic Kuwahara paper](https://www.kyprianidis.com/p/pg2009/jkyprian-pg2009.pdf)
* [Anisotropic Kuwahara but with polynomials](https://diglib.eg.org/bitstream/handle/10.2312/LocalChapterEvents.TPCG.TPCG10.025-030/025-030.pdf)
* https://docs.blender.org/manual/en/dev/compositing/types/filter/kuwahara.html
* https://www.youtube.com/watch?v=LDhN-JK3U9g
Raw data
{
"_id": null,
"home_page": "",
"name": "kuwahara-torch",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "",
"keywords": "pytorch,shaders,image,kuwahara",
"author": "",
"author_email": "Evan Arlian <evanarlian2000@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/96/d6/a35571674f9561e4deb537f68c088d6ea9574041291c0b5d13d93e00cb44/kuwahara-torch-0.0.3.tar.gz",
"platform": null,
"description": "# kuwahara-torch\nKuwahara filter in PyTorch.\n\n# Usage\nSee full code and images on [example](example/) dir.\n```bash\npip install -U kuwahara-torch\n```\n\n# Examples\nOriginally kuwahara filter was used for denoising.\n\n| Original | kuwahara | Generalized kuwahara |\n|------------------------|------------------------|------------------------|\n| ![](example/noisy.jpg) | ![](example/noisy_k.jpg) | ![](example/noisy_gk.jpg) |\n\nBut now it is used for artistic style.\n| Original | kuwahara | Generalized kuwahara |\n|------------------------|------------------------|------------------------|\n| ![](example/cat.jpg) | ![](example/cat_k.jpg) | ![](example/cat_gk.jpg) |\n\n| Original | Generalized kuwahara |\n|------------------------|------------------------|\n| ![](example/chinatown.jpg) | ![](example/chinatown_gk.jpg) |\n\n# TODO\n* [x] Kuwahara\n* [x] Generalized kuwahara\n* [ ] Anisotropic kuwahara. Idk how to tilt the kernel in pytorch. PRs are welcome.\n\n# References\n* https://en.wikipedia.org/wiki/Kuwahara_filter\n* [Generalized Kuwahara paper](https://core.ac.uk/download/pdf/148194268.pdf)\n* [Anisotropic Kuwahara paper](https://www.kyprianidis.com/p/pg2009/jkyprian-pg2009.pdf)\n* [Anisotropic Kuwahara but with polynomials](https://diglib.eg.org/bitstream/handle/10.2312/LocalChapterEvents.TPCG.TPCG10.025-030/025-030.pdf)\n* https://docs.blender.org/manual/en/dev/compositing/types/filter/kuwahara.html\n* https://www.youtube.com/watch?v=LDhN-JK3U9g\n",
"bugtrack_url": null,
"license": "MIT License Copyright (c) 2023 evanarlian Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
"summary": "Kuwahara filter in PyTorch.",
"version": "0.0.3",
"project_urls": {
"Homepage": "https://github.com/evanarlian/kuwahara-torch"
},
"split_keywords": [
"pytorch",
"shaders",
"image",
"kuwahara"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "44d1a4ffae62b4f00275115ab5ff61e4643df529de859e5f583b5b2b9b808499",
"md5": "70c1243484ea3acd009e003d05a6dc95",
"sha256": "3646e97c47527016a81c18db50399f35456190231290c6fa158746eff791ba4c"
},
"downloads": -1,
"filename": "kuwahara_torch-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "70c1243484ea3acd009e003d05a6dc95",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 7229,
"upload_time": "2023-12-19T11:19:11",
"upload_time_iso_8601": "2023-12-19T11:19:11.615300Z",
"url": "https://files.pythonhosted.org/packages/44/d1/a4ffae62b4f00275115ab5ff61e4643df529de859e5f583b5b2b9b808499/kuwahara_torch-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "96d6a35571674f9561e4deb537f68c088d6ea9574041291c0b5d13d93e00cb44",
"md5": "53c22db0f81f7c426ecfcbb6190cc217",
"sha256": "ad26f5cf265e5a23d2f5b0fadcda6fc72a35292c4ec2363b656eba14b4735970"
},
"downloads": -1,
"filename": "kuwahara-torch-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "53c22db0f81f7c426ecfcbb6190cc217",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 8478,
"upload_time": "2023-12-19T11:19:13",
"upload_time_iso_8601": "2023-12-19T11:19:13.762898Z",
"url": "https://files.pythonhosted.org/packages/96/d6/a35571674f9561e4deb537f68c088d6ea9574041291c0b5d13d93e00cb44/kuwahara-torch-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-19 11:19:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "evanarlian",
"github_project": "kuwahara-torch",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "kuwahara-torch"
}