layernext-enterprise-beta


Namelayernext-enterprise-beta JSON
Version 1.1.0b1 PyPI version JSON
download
home_page
SummaryLayerNext Python SDK
upload_time2023-08-03 10:48:41
maintainer
docs_urlNone
authorLayerNext
requires_python
license
keywords python datalake datasetsync ai annotation layernext layernext machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# layernext-python-sdk

LayerNext Python API Client
Sync (upload/download) with LayerNext stacks via APIs from your local machine

You can
- Upload model runs data


## Installation

`$ pip install layernext-sdk`

## Usage

```python
import layernext  
  
api_key = 'xxxxxxxxxx' 
secret = 'xxxxxxxxxxx'
url = 'https://api.xxxx.layernext.ai'
  
client = layernext.LayerNextClient(api_key, secret, url)  

collection_base_path = 'path1/path2/'
  
#upload box type annotations
file_path_bbox = '/home/bob/mydata/example_bbox.json' #local file path
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.1', file_path_bbox, 'rectangle')

#upload polygon type annotations
file_path_polygon = '/home/bob/mydata/example_polygon.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.2', file_path_polygon, 'polygon')

#upload line type annotations
file_path_line = '/home/bob/mydata/example_line.json'
client.upload_modelrun_from_json(collection_base_path, 'test model v1.0.3', file_path_line, 'line')
```

## Sample Data

**Box Geometry**
```json
{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "bbox":[
                  217.62,
                  240.54,
                  38.99,
                  57.75
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.30611335805442985
            }
         ]
      }
   ]
}
```

**Polygon Geometry**
```json
{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "polygon":[
                  [
                     224.24,
                     297.18
                  ],
                  [
                     228.29,
                     297.18
                  ],
                  [
                     234.91,
                     298.29
                  ],
                  [
                     243.0,
                     297.55
                  ],
                  [
                     249.25,
                     296.45
                  ],
                  [
                     252.19,
                     294.98
                  ],
                  [
                     256.61,
                     292.4
                  ],
                  [
                     254.4,
                     264.08
                  ],
                  [
                     251.83,
                     262.61
                  ],
                  [
                     241.53,
                     260.04
                  ],
                  [
                     235.27,
                     259.67
                  ],
                  [
                     230.49,
                     259.67
                  ],
                  [
                     233.44,
                     255.25
                  ],
                  [
                     237.48,
                     250.47
                  ],
                  [
                     237.85,
                     243.85
                  ],
                  [
                     237.11,
                     240.54
                  ],
                  [
                     234.17,
                     242.01
                  ],
                  [
                     228.65,
                     249.37
                  ],
                  [
                     224.24,
                     255.62
                  ],
                  [
                     220.93,
                     262.61
                  ],
                  [
                     218.36,
                     267.39
                  ],
                  [
                     217.62,
                     268.5
                  ],
                  [
                     218.72,
                     295.71
                  ],
                  [
                     225.34,
                     297.55
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.8316836170368476
            }
         ]
      }
   ]
}
```

**Line Geometry**
```json
{
   "images":[
      {
         "image":"000000397133.jpg",
         "annotations":[
            {
               "line":[
                  [
                     217.62,
                     240.54
                  ],
                  [
                     256.61,
                     240.54
                  ],
                  [
                     256.61,
                     298.28999999999996
                  ],
                  [
                     217.62,
                     298.28999999999996
                  ]
               ],
               "label":"kitchen",
               "metadata":{
                  "name":"bottle"
               },
               "confidence":0.9496247739008129
            }
         ]
      }
   ]
}
```



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "layernext-enterprise-beta",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,datalake,datasetsync,ai,annotation,layernext,layernext,machine learning",
    "author": "LayerNext",
    "author_email": "<support@layernext.ai>",
    "download_url": "https://files.pythonhosted.org/packages/fc/36/06e60149493002e72623728c6e81d4d962c0801107a24d34e78f7e71d970/layernext-enterprise-beta-1.1.0b1.tar.gz",
    "platform": null,
    "description": "\n# layernext-python-sdk\n\nLayerNext Python API Client\nSync (upload/download) with LayerNext stacks via APIs from your local machine\n\nYou can\n- Upload model runs data\n\n\n## Installation\n\n`$ pip install layernext-sdk`\n\n## Usage\n\n```python\nimport layernext  \n  \napi_key = 'xxxxxxxxxx' \nsecret = 'xxxxxxxxxxx'\nurl = 'https://api.xxxx.layernext.ai'\n  \nclient = layernext.LayerNextClient(api_key, secret, url)  \n\ncollection_base_path = 'path1/path2/'\n  \n#upload box type annotations\nfile_path_bbox = '/home/bob/mydata/example_bbox.json' #local file path\nclient.upload_modelrun_from_json(collection_base_path, 'test model v1.0.1', file_path_bbox, 'rectangle')\n\n#upload polygon type annotations\nfile_path_polygon = '/home/bob/mydata/example_polygon.json'\nclient.upload_modelrun_from_json(collection_base_path, 'test model v1.0.2', file_path_polygon, 'polygon')\n\n#upload line type annotations\nfile_path_line = '/home/bob/mydata/example_line.json'\nclient.upload_modelrun_from_json(collection_base_path, 'test model v1.0.3', file_path_line, 'line')\n```\n\n## Sample Data\n\n**Box Geometry**\n```json\n{\n   \"images\":[\n      {\n         \"image\":\"000000397133.jpg\",\n         \"annotations\":[\n            {\n               \"bbox\":[\n                  217.62,\n                  240.54,\n                  38.99,\n                  57.75\n               ],\n               \"label\":\"kitchen\",\n               \"metadata\":{\n                  \"name\":\"bottle\"\n               },\n               \"confidence\":0.30611335805442985\n            }\n         ]\n      }\n   ]\n}\n```\n\n**Polygon Geometry**\n```json\n{\n   \"images\":[\n      {\n         \"image\":\"000000397133.jpg\",\n         \"annotations\":[\n            {\n               \"polygon\":[\n                  [\n                     224.24,\n                     297.18\n                  ],\n                  [\n                     228.29,\n                     297.18\n                  ],\n                  [\n                     234.91,\n                     298.29\n                  ],\n                  [\n                     243.0,\n                     297.55\n                  ],\n                  [\n                     249.25,\n                     296.45\n                  ],\n                  [\n                     252.19,\n                     294.98\n                  ],\n                  [\n                     256.61,\n                     292.4\n                  ],\n                  [\n                     254.4,\n                     264.08\n                  ],\n                  [\n                     251.83,\n                     262.61\n                  ],\n                  [\n                     241.53,\n                     260.04\n                  ],\n                  [\n                     235.27,\n                     259.67\n                  ],\n                  [\n                     230.49,\n                     259.67\n                  ],\n                  [\n                     233.44,\n                     255.25\n                  ],\n                  [\n                     237.48,\n                     250.47\n                  ],\n                  [\n                     237.85,\n                     243.85\n                  ],\n                  [\n                     237.11,\n                     240.54\n                  ],\n                  [\n                     234.17,\n                     242.01\n                  ],\n                  [\n                     228.65,\n                     249.37\n                  ],\n                  [\n                     224.24,\n                     255.62\n                  ],\n                  [\n                     220.93,\n                     262.61\n                  ],\n                  [\n                     218.36,\n                     267.39\n                  ],\n                  [\n                     217.62,\n                     268.5\n                  ],\n                  [\n                     218.72,\n                     295.71\n                  ],\n                  [\n                     225.34,\n                     297.55\n                  ]\n               ],\n               \"label\":\"kitchen\",\n               \"metadata\":{\n                  \"name\":\"bottle\"\n               },\n               \"confidence\":0.8316836170368476\n            }\n         ]\n      }\n   ]\n}\n```\n\n**Line Geometry**\n```json\n{\n   \"images\":[\n      {\n         \"image\":\"000000397133.jpg\",\n         \"annotations\":[\n            {\n               \"line\":[\n                  [\n                     217.62,\n                     240.54\n                  ],\n                  [\n                     256.61,\n                     240.54\n                  ],\n                  [\n                     256.61,\n                     298.28999999999996\n                  ],\n                  [\n                     217.62,\n                     298.28999999999996\n                  ]\n               ],\n               \"label\":\"kitchen\",\n               \"metadata\":{\n                  \"name\":\"bottle\"\n               },\n               \"confidence\":0.9496247739008129\n            }\n         ]\n      }\n   ]\n}\n```\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "LayerNext Python SDK",
    "version": "1.1.0b1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "datalake",
        "datasetsync",
        "ai",
        "annotation",
        "layernext",
        "layernext",
        "machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "14ea1c9876d7d3d5e03f8a55a1c3b73caed4e3e43af77d4db987eb5b7c3e3da9",
                "md5": "68de34ae0d616b6b2093371ed4166093",
                "sha256": "521d8eef7272f3b12a8b79aad75230062f8fd8da548eff9e33470a565e482dc6"
            },
            "downloads": -1,
            "filename": "layernext_enterprise_beta-1.1.0b1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "68de34ae0d616b6b2093371ed4166093",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 42617,
            "upload_time": "2023-08-03T10:48:39",
            "upload_time_iso_8601": "2023-08-03T10:48:39.865872Z",
            "url": "https://files.pythonhosted.org/packages/14/ea/1c9876d7d3d5e03f8a55a1c3b73caed4e3e43af77d4db987eb5b7c3e3da9/layernext_enterprise_beta-1.1.0b1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc3606e60149493002e72623728c6e81d4d962c0801107a24d34e78f7e71d970",
                "md5": "a8f284dff3d91684016ff46b2b79082a",
                "sha256": "f3cb51ceba0a99614c57aee7aa5502b21f6fdbed936dcfa9eedc53a5a0b4599a"
            },
            "downloads": -1,
            "filename": "layernext-enterprise-beta-1.1.0b1.tar.gz",
            "has_sig": false,
            "md5_digest": "a8f284dff3d91684016ff46b2b79082a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 34341,
            "upload_time": "2023-08-03T10:48:41",
            "upload_time_iso_8601": "2023-08-03T10:48:41.676180Z",
            "url": "https://files.pythonhosted.org/packages/fc/36/06e60149493002e72623728c6e81d4d962c0801107a24d34e78f7e71d970/layernext-enterprise-beta-1.1.0b1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-03 10:48:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "layernext-enterprise-beta"
}
        
Elapsed time: 0.13038s