lazyforecast


Namelazyforecast JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/piyushsinghoffice/LazyForecast.git
SummaryLazyForecast is a Python library for performing univariate time series analysis using a lazy forecasting approach. This approach is designed to provide quick and simple forecasting models without requiring extensive configuration or parameter tuning.
upload_time2023-06-27 10:10:26
maintainer
docs_urlNone
authorPiyush Singh
requires_python>=3.9
licenseMIT
keywords arima timeseries forecasting pyramid pmdarima pyramid-arima scikit-learn statsmodels tensorflow tensor machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# LazyForecast
LazyForecast is a Python library for performing univariate time series analysis using a lazy forecasting approach. This approach is designed to provide quick and simple forecasting models without requiring extensive configuration or parameter tuning.

## Table of Contents
- [Installation](#installation)
- [Features](#features)
- [Usage](#usage)
- [Output](#output)

## Installation
You can install LazyForecast using pip:
```bash
pip install lazyforecast
```

## Features
- LazyForecasting automatically selects the best model based on the characteristics of the input time series.
- It supports univariate time series analysis.
- LazyForecasting provides functions for data preprocessing, model training, forecasting, and evaluation.
- It includes various popular forecasting models such as Auto ARIMA, Vanilla LSTM, and RNN.

## Usage
Here's an example of how to use the LazyForecast library to forecast stock prices using historical data:
```python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import yfinance as yf
import LazyForecast as lf

# Set the number of periods and steps for forecasting
n_periods = 50
n_steps = 5

# Create an instance of LazyForecast
ts = lf.LazyForecast(n_periods=n_periods, n_steps=n_steps, n_members=5)

# Specify the start and end dates for the data
start_date = '2021-01-01'
end_date = '2022-12-31'

# Fetch the historical stock data for Google
df = yf.download('GOOGL', start=start_date, end=end_date)

# Reset the index of the DataFrame
df.reset_index(level=0, inplace=True)

# Fit the data to the LazyForecast model and obtain evaluation metrics, forecasts, and confidence intervals
eval_df, fc, confint = ts.fit(df, x_axis='Date', y_axis='Close')

# Print the evaluation metrics for each model
print(eval_df)
```

## Output

### Auto-Regressive Integrated Moving Average (ARIMA)
![Imgur](https://i.imgur.com/ML90i3D.png)

### Multi-Layer Perceptron (MLP)
![Alt text](https://i.imgur.com/M2s8olH.png)

### Vanilla Long Short-Term Memory (LSTM)
![Alt text](https://i.imgur.com/R8KDORF.png)

### Stacked LSTM
![Alt text](https://i.imgur.com/lnW9IZd.png)

### Bi-directional LSTM
![Alt text](https://i.imgur.com/lrjYoFm.png)

### Recurrent Neural Network (RNN)
![Alt text](https://i.imgur.com/k4VQ6lH.png)

### Gated Recurrent Unit (GRU)
![Alt text](https://i.imgur.com/8hiG805.png)

### Evaluation Table
  
| model              |      mda |    rmse |      mape |       R2 |     mae |     corr |
| :----------------- | -------: | ------: | --------: | -------: | ------: | -------: |
| ARIMA              |  0.55102 | 2.62852 | 0.0208377 |  0.72456 |  1.9532 | 0.863465 |
| GRU                |  0.55102 |  2.6993 | 0.0216135 | 0.667912 | 2.03898 |  0.85146 |
| BIDIRECTIONAL LSTM |  0.55102 | 2.72504 | 0.0220456 | 0.639895 | 2.08601 | 0.851686 |
| VANILLA LSTM       |  0.55102 | 2.79671 | 0.0225355 | 0.630066 | 2.13659 | 0.848691 |
| STACKED LSTM       | 0.510204 | 2.90771 | 0.0233817 | 0.581736 | 2.22243 | 0.851591 |
| MLP                | 0.510204 | 7.57871 | 0.0664394 |  -4.6669 | 6.66732 | 0.698219 |
| RNN                | 0.469388 | 2.96933 | 0.0240381 | 0.609076 | 2.27333 | 0.821808 |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/piyushsinghoffice/LazyForecast.git",
    "name": "lazyforecast",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "arima,timeseries,forecasting,pyramid,pmdarima,pyramid-arima,scikit-learn,statsmodels,tensorflow,tensor,machine,learning",
    "author": "Piyush Singh",
    "author_email": "piyush.singh.office@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/93/b1/df60a089af7f62ff12a6b5fc0f90019eeb9db9ed486fb4abce5a564f77bd/lazyforecast-0.0.1.tar.gz",
    "platform": null,
    "description": "\n# LazyForecast\nLazyForecast is a Python library for performing univariate time series analysis using a lazy forecasting approach. This approach is designed to provide quick and simple forecasting models without requiring extensive configuration or parameter tuning.\n\n## Table of Contents\n- [Installation](#installation)\n- [Features](#features)\n- [Usage](#usage)\n- [Output](#output)\n\n## Installation\nYou can install LazyForecast using pip:\n```bash\npip install lazyforecast\n```\n\n## Features\n- LazyForecasting automatically selects the best model based on the characteristics of the input time series.\n- It supports univariate time series analysis.\n- LazyForecasting provides functions for data preprocessing, model training, forecasting, and evaluation.\n- It includes various popular forecasting models such as Auto ARIMA, Vanilla LSTM, and RNN.\n\n## Usage\nHere's an example of how to use the LazyForecast library to forecast stock prices using historical data:\n```python\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport yfinance as yf\nimport LazyForecast as lf\n\n# Set the number of periods and steps for forecasting\nn_periods = 50\nn_steps = 5\n\n# Create an instance of LazyForecast\nts = lf.LazyForecast(n_periods=n_periods, n_steps=n_steps, n_members=5)\n\n# Specify the start and end dates for the data\nstart_date = '2021-01-01'\nend_date = '2022-12-31'\n\n# Fetch the historical stock data for Google\ndf = yf.download('GOOGL', start=start_date, end=end_date)\n\n# Reset the index of the DataFrame\ndf.reset_index(level=0, inplace=True)\n\n# Fit the data to the LazyForecast model and obtain evaluation metrics, forecasts, and confidence intervals\neval_df, fc, confint = ts.fit(df, x_axis='Date', y_axis='Close')\n\n# Print the evaluation metrics for each model\nprint(eval_df)\n```\n\n## Output\n\n### Auto-Regressive Integrated Moving Average (ARIMA)\n![Imgur](https://i.imgur.com/ML90i3D.png)\n\n### Multi-Layer Perceptron (MLP)\n![Alt text](https://i.imgur.com/M2s8olH.png)\n\n### Vanilla Long Short-Term Memory (LSTM)\n![Alt text](https://i.imgur.com/R8KDORF.png)\n\n### Stacked LSTM\n![Alt text](https://i.imgur.com/lnW9IZd.png)\n\n### Bi-directional LSTM\n![Alt text](https://i.imgur.com/lrjYoFm.png)\n\n### Recurrent Neural Network (RNN)\n![Alt text](https://i.imgur.com/k4VQ6lH.png)\n\n### Gated Recurrent Unit (GRU)\n![Alt text](https://i.imgur.com/8hiG805.png)\n\n### Evaluation Table\n  \n| model              |      mda |    rmse |      mape |       R2 |     mae |     corr |\n| :----------------- | -------: | ------: | --------: | -------: | ------: | -------: |\n| ARIMA              |  0.55102 | 2.62852 | 0.0208377 |  0.72456 |  1.9532 | 0.863465 |\n| GRU                |  0.55102 |  2.6993 | 0.0216135 | 0.667912 | 2.03898 |  0.85146 |\n| BIDIRECTIONAL LSTM |  0.55102 | 2.72504 | 0.0220456 | 0.639895 | 2.08601 | 0.851686 |\n| VANILLA LSTM       |  0.55102 | 2.79671 | 0.0225355 | 0.630066 | 2.13659 | 0.848691 |\n| STACKED LSTM       | 0.510204 | 2.90771 | 0.0233817 | 0.581736 | 2.22243 | 0.851591 |\n| MLP                | 0.510204 | 7.57871 | 0.0664394 |  -4.6669 | 6.66732 | 0.698219 |\n| RNN                | 0.469388 | 2.96933 | 0.0240381 | 0.609076 | 2.27333 | 0.821808 |\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "LazyForecast is a Python library for performing univariate time series analysis using a lazy forecasting approach. This approach is designed to provide quick and simple forecasting models without requiring extensive configuration or parameter tuning.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/piyushsinghoffice/LazyForecast.git"
    },
    "split_keywords": [
        "arima",
        "timeseries",
        "forecasting",
        "pyramid",
        "pmdarima",
        "pyramid-arima",
        "scikit-learn",
        "statsmodels",
        "tensorflow",
        "tensor",
        "machine",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ccba476508dd31c5bf68625922a2ca116c2e937e6767f1d6c7f2a7f179743e4f",
                "md5": "02cea29f50390765333f20ab55dfea67",
                "sha256": "41cdf026f8e3606402712da9c80a518b2a93e86bd7347d80f5b8e1afee3486e9"
            },
            "downloads": -1,
            "filename": "lazyforecast-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "02cea29f50390765333f20ab55dfea67",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 8727,
            "upload_time": "2023-06-27T10:10:25",
            "upload_time_iso_8601": "2023-06-27T10:10:25.059474Z",
            "url": "https://files.pythonhosted.org/packages/cc/ba/476508dd31c5bf68625922a2ca116c2e937e6767f1d6c7f2a7f179743e4f/lazyforecast-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "93b1df60a089af7f62ff12a6b5fc0f90019eeb9db9ed486fb4abce5a564f77bd",
                "md5": "722a5c4347e99cf2a449ac8808f5d24a",
                "sha256": "9a3de1fcae398d7843e668ce67c819d63d61cf6d77dbe8eebf7f4b5ffdaa02d3"
            },
            "downloads": -1,
            "filename": "lazyforecast-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "722a5c4347e99cf2a449ac8808f5d24a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 8386,
            "upload_time": "2023-06-27T10:10:26",
            "upload_time_iso_8601": "2023-06-27T10:10:26.681714Z",
            "url": "https://files.pythonhosted.org/packages/93/b1/df60a089af7f62ff12a6b5fc0f90019eeb9db9ed486fb4abce5a564f77bd/lazyforecast-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-27 10:10:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "piyushsinghoffice",
    "github_project": "LazyForecast",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "lazyforecast"
}
        
Elapsed time: 0.19053s