lightgbm-tools


Namelightgbm-tools JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/telekom/lightgbm-tools
SummaryLightGM Tools
upload_time2023-01-05 21:07:05
maintainerPhilip May
docs_urlNone
authorPhilip May
requires_python>=3.7
license
keywords ml ai machine-learning metrics lightgbm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LightGBM Tools

[![MIT License](https://img.shields.io/github/license/telekom/lightgbm-tools)](https://github.com/telekom/lightgbm-tools/blob/main/LICENSE)
[![Python Version](https://img.shields.io/pypi/pyversions/lightgbm-tools)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/lightgbm-tools.svg)](https://pypi.python.org/pypi/lightgbm-tools)

This Python package implements tools for [LightGBM](https://lightgbm.readthedocs.io/).
In the current version lightgbm-tools focuses on binary classification metrics.

## What exact problem does this tool solve?

LightGBM has some [built-in metrics](https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html#metric) that can be used.
These are useful but limited. Some important metrics are missing.
These are, among others, the [F1-score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)
and the [average precision (AP)](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html).

These metrics can be easily added using this tool.
This happens through a mechanism built into LightGBM where we can assign a callback to the `feval` parameter of
`lightgbm.train` (see
[lightgbm.train](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html#lightgbm-train) documentation).

## Maintainers

[![One Conversation](https://raw.githubusercontent.com/telekom/lightgbm-tools/main/docs/source/imgs/1c-logo.png)](https://www.welove.ai/)
<br/>
This project is maintained by the [One Conversation](https://www.welove.ai/)
team of [Deutsche Telekom AG](https://www.telekom.com/).

## Usage

You can find a fully functional example here: <https://github.com/telekom/lightgbm-tools/blob/main/examples/main_usage.py>

The easiest way is to use the predefined callback functions. These are:

- `lightgbm_tools.metrics.lgbm_f1_score_callback`
- `lightgbm_tools.metrics.lgbm_accuracy_score_callback`
- `lightgbm_tools.metrics.lgbm_average_precision_score_callback`
- `lightgbm_tools.metrics.lgbm_roc_auc_score_callback`
- `lightgbm_tools.metrics.lgbm_recall_score_callback`
- `lightgbm_tools.metrics.lgbm_precision_score_callback`

Here F1 is used as an example to show how the predefined callback functions can be used:

```python
import lightgbm
from lightgbm_tools.metrics import lgbm_f1_score_callback

bst = lightgbm.train(
    params,
    train_data,
    valid_sets=val_data,
    num_boost_round=6,
    verbose_eval=False,
    evals_result=evals_result,
    feval=lgbm_f1_score_callback,  # here we pass the callback to LightGBM
)
```

You can also reuse other implementations of metrics.
Here is an example of how to do this using the `balanced_accuracy_score` from scikit-learn:

```python
import lightgbm
from sklearn.metrics import balanced_accuracy_score
from lightgbm_tools.metrics import LightGbmEvalFunction, binary_eval_callback_factory

# define own custom eval (metric) function for balanced_accuracy_score
lgbm_balanced_accuracy = LightGbmEvalFunction(
    name="balanced_accuracy",
    function=balanced_accuracy_score,
    is_higher_better=True,
    needs_binary_predictions=True,
)

# use the factory function to create the callback
lgbm_balanced_accuracy_callback = binary_eval_callback_factory([lgbm_balanced_accuracy])

bst = lightgbm.train(
    params,
    train_data,
    valid_sets=val_data,
    num_boost_round=6,
    verbose_eval=False,
    evals_result=evals_result,
    feval=lgbm_balanced_accuracy_callback,  # here we pass the callback to LightGBM
)
```

This tool can also be used to calculate multiple metrics at the same time.
It can be done by passing several definitions of metrics (in a list) to the
`binary_eval_callback_factory`.
The followring predefined metric definitions (`LightGbmEvalFunction`) are available:

- `lightgbm_tools.metrics.lgbm_f1_score`
- `lightgbm_tools.metrics.lgbm_accuracy_score`
- `lightgbm_tools.metrics.lgbm_average_precision_score`
- `lightgbm_tools.metrics.lgbm_roc_auc_score`
- `lightgbm_tools.metrics.lgbm_recall_score`
- `lightgbm_tools.metrics.lgbm_precision_score`

Below is an example how to combine F1 and average precision:

```python
import lightgbm
from lightgbm_tools.metrics import (
    binary_eval_callback_factory,
    lgbm_average_precision_score,
    lgbm_f1_score,
)

# use the factory function to create the callback
callback = binary_eval_callback_factory([lgbm_average_precision_score, lgbm_f1_score])

bst = lightgbm.train(
    params,
    train_data,
    valid_sets=val_data,
    num_boost_round=6,
    verbose_eval=False,
    evals_result=evals_result,
    feval=callback,  # here we pass the callback to LightGBM
)
```

## Installation

lightgbm-tools can be installed with pip:

```bash
pip install lightgbm-tools
```

To do development and run unit tests locally, ensure that you have installed all relevant requirements.
You will probably want to install it in "editable mode" if you are developing locally:

```bash
pip install -e .[all]
```

## Licensing

Copyright (c) 2022 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)

Licensed under the **MIT License** (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License by reviewing the file
[LICENSE](https://github.com/telekom/lightgbm-tools/blob/main/LICENSE) in the repository.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/telekom/lightgbm-tools",
    "name": "lightgbm-tools",
    "maintainer": "Philip May",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "ml ai machine-learning metrics lightgbm",
    "author": "Philip May",
    "author_email": "philip@may.la",
    "download_url": "https://files.pythonhosted.org/packages/ce/3f/5c3f0124df63af193a0e025fcefd2222a9d8dfef49fc5b00644e4a1be9fa/lightgbm_tools-0.0.2.tar.gz",
    "platform": null,
    "description": "# LightGBM Tools\n\n[![MIT License](https://img.shields.io/github/license/telekom/lightgbm-tools)](https://github.com/telekom/lightgbm-tools/blob/main/LICENSE)\n[![Python Version](https://img.shields.io/pypi/pyversions/lightgbm-tools)](https://www.python.org)\n[![pypi](https://img.shields.io/pypi/v/lightgbm-tools.svg)](https://pypi.python.org/pypi/lightgbm-tools)\n\nThis Python package implements tools for [LightGBM](https://lightgbm.readthedocs.io/).\nIn the current version lightgbm-tools focuses on binary classification metrics.\n\n## What exact problem does this tool solve?\n\nLightGBM has some [built-in metrics](https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html#metric) that can be used.\nThese are useful but limited. Some important metrics are missing.\nThese are, among others, the [F1-score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)\nand the [average precision (AP)](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html).\n\nThese metrics can be easily added using this tool.\nThis happens through a mechanism built into LightGBM where we can assign a callback to the `feval` parameter of\n`lightgbm.train` (see\n[lightgbm.train](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html#lightgbm-train) documentation).\n\n## Maintainers\n\n[![One Conversation](https://raw.githubusercontent.com/telekom/lightgbm-tools/main/docs/source/imgs/1c-logo.png)](https://www.welove.ai/)\n<br/>\nThis project is maintained by the [One Conversation](https://www.welove.ai/)\nteam of [Deutsche Telekom AG](https://www.telekom.com/).\n\n## Usage\n\nYou can find a fully functional example here: <https://github.com/telekom/lightgbm-tools/blob/main/examples/main_usage.py>\n\nThe easiest way is to use the predefined callback functions. These are:\n\n- `lightgbm_tools.metrics.lgbm_f1_score_callback`\n- `lightgbm_tools.metrics.lgbm_accuracy_score_callback`\n- `lightgbm_tools.metrics.lgbm_average_precision_score_callback`\n- `lightgbm_tools.metrics.lgbm_roc_auc_score_callback`\n- `lightgbm_tools.metrics.lgbm_recall_score_callback`\n- `lightgbm_tools.metrics.lgbm_precision_score_callback`\n\nHere F1 is used as an example to show how the predefined callback functions can be used:\n\n```python\nimport lightgbm\nfrom lightgbm_tools.metrics import lgbm_f1_score_callback\n\nbst = lightgbm.train(\n    params,\n    train_data,\n    valid_sets=val_data,\n    num_boost_round=6,\n    verbose_eval=False,\n    evals_result=evals_result,\n    feval=lgbm_f1_score_callback,  # here we pass the callback to LightGBM\n)\n```\n\nYou can also reuse other implementations of metrics.\nHere is an example of how to do this using the `balanced_accuracy_score` from scikit-learn:\n\n```python\nimport lightgbm\nfrom sklearn.metrics import balanced_accuracy_score\nfrom lightgbm_tools.metrics import LightGbmEvalFunction, binary_eval_callback_factory\n\n# define own custom eval (metric) function for balanced_accuracy_score\nlgbm_balanced_accuracy = LightGbmEvalFunction(\n    name=\"balanced_accuracy\",\n    function=balanced_accuracy_score,\n    is_higher_better=True,\n    needs_binary_predictions=True,\n)\n\n# use the factory function to create the callback\nlgbm_balanced_accuracy_callback = binary_eval_callback_factory([lgbm_balanced_accuracy])\n\nbst = lightgbm.train(\n    params,\n    train_data,\n    valid_sets=val_data,\n    num_boost_round=6,\n    verbose_eval=False,\n    evals_result=evals_result,\n    feval=lgbm_balanced_accuracy_callback,  # here we pass the callback to LightGBM\n)\n```\n\nThis tool can also be used to calculate multiple metrics at the same time.\nIt can be done by passing several definitions of metrics (in a list) to the\n`binary_eval_callback_factory`.\nThe followring predefined metric definitions (`LightGbmEvalFunction`) are available:\n\n- `lightgbm_tools.metrics.lgbm_f1_score`\n- `lightgbm_tools.metrics.lgbm_accuracy_score`\n- `lightgbm_tools.metrics.lgbm_average_precision_score`\n- `lightgbm_tools.metrics.lgbm_roc_auc_score`\n- `lightgbm_tools.metrics.lgbm_recall_score`\n- `lightgbm_tools.metrics.lgbm_precision_score`\n\nBelow is an example how to combine F1 and average precision:\n\n```python\nimport lightgbm\nfrom lightgbm_tools.metrics import (\n    binary_eval_callback_factory,\n    lgbm_average_precision_score,\n    lgbm_f1_score,\n)\n\n# use the factory function to create the callback\ncallback = binary_eval_callback_factory([lgbm_average_precision_score, lgbm_f1_score])\n\nbst = lightgbm.train(\n    params,\n    train_data,\n    valid_sets=val_data,\n    num_boost_round=6,\n    verbose_eval=False,\n    evals_result=evals_result,\n    feval=callback,  # here we pass the callback to LightGBM\n)\n```\n\n## Installation\n\nlightgbm-tools can be installed with pip:\n\n```bash\npip install lightgbm-tools\n```\n\nTo do development and run unit tests locally, ensure that you have installed all relevant requirements.\nYou will probably want to install it in \"editable mode\" if you are developing locally:\n\n```bash\npip install -e .[all]\n```\n\n## Licensing\n\nCopyright (c) 2022 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)\n\nLicensed under the **MIT License** (the \"License\"); you may not use this file except in compliance with the License.\nYou may obtain a copy of the License by reviewing the file\n[LICENSE](https://github.com/telekom/lightgbm-tools/blob/main/LICENSE) in the repository.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "LightGM Tools",
    "version": "0.0.2",
    "split_keywords": [
        "ml",
        "ai",
        "machine-learning",
        "metrics",
        "lightgbm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cfc640fdf972ff78106bfac246a9d6f67a12fbcf878fc1d437767c366cac3f9f",
                "md5": "675de41c67db0b12522b5163fc3ede67",
                "sha256": "904bd71c95a6b00e136348b6ba29542bce837af4cc24959b52070d4d3f855b92"
            },
            "downloads": -1,
            "filename": "lightgbm_tools-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "675de41c67db0b12522b5163fc3ede67",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5875,
            "upload_time": "2023-01-05T21:07:03",
            "upload_time_iso_8601": "2023-01-05T21:07:03.409577Z",
            "url": "https://files.pythonhosted.org/packages/cf/c6/40fdf972ff78106bfac246a9d6f67a12fbcf878fc1d437767c366cac3f9f/lightgbm_tools-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ce3f5c3f0124df63af193a0e025fcefd2222a9d8dfef49fc5b00644e4a1be9fa",
                "md5": "e1f99094ba685e95153faed560fe3219",
                "sha256": "efc17f88a9183e9c26bff0aabafbac3ce61b915f52e21725df212e0974d63be6"
            },
            "downloads": -1,
            "filename": "lightgbm_tools-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "e1f99094ba685e95153faed560fe3219",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6068,
            "upload_time": "2023-01-05T21:07:05",
            "upload_time_iso_8601": "2023-01-05T21:07:05.086329Z",
            "url": "https://files.pythonhosted.org/packages/ce/3f/5c3f0124df63af193a0e025fcefd2222a9d8dfef49fc5b00644e4a1be9fa/lightgbm_tools-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-05 21:07:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "telekom",
    "github_project": "lightgbm-tools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "lightgbm-tools"
}
        
Elapsed time: 0.03916s