# Little Data Preprocessor
Welcome to Little Data Preprocessor! This Python package provides utility functions to aid in the preprocessing stages of machine learning and deep learning implementation. With a focus on ease of use and efficiency, it offers functions for handling missing values, removing infinity values, checking data integrity, and more.
## Features
- **Drop Columns Based on Mean:** Easily drop columns with a mean value of zero from your DataFrame.
- **Drop Infinity Columns:** Replace infinity values with NaN and drop rows containing these values.
- **Write Column Datatypes to Text File:** Export the datatypes of each column in your DataFrame to a text file.
- **DataFrame Integrity Check:** Perform comprehensive checks on your DataFrame for NaN values, infinity values, duplicates, and more.
## Installation
You can install Little Data Preprocessor using pip:
```bash
pip install little_data_preprocessor
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Uncle-Solomon/little_preprocessor",
"name": "little-data-preprocessor",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, pandas, preprocessing",
"author": "Ameh Solomon Onyeke",
"author_email": "amehsolomon46@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f8/20/5ca17f681efb1aeddb408803d9c9970a059bec4fb3e2dd7a985f450cfa74/little_data_preprocessor-1.0.4.tar.gz",
"platform": null,
"description": "# Little Data Preprocessor\r\n\r\nWelcome to Little Data Preprocessor! This Python package provides utility functions to aid in the preprocessing stages of machine learning and deep learning implementation. With a focus on ease of use and efficiency, it offers functions for handling missing values, removing infinity values, checking data integrity, and more.\r\n\r\n## Features\r\n\r\n- **Drop Columns Based on Mean:** Easily drop columns with a mean value of zero from your DataFrame.\r\n- **Drop Infinity Columns:** Replace infinity values with NaN and drop rows containing these values.\r\n- **Write Column Datatypes to Text File:** Export the datatypes of each column in your DataFrame to a text file.\r\n- **DataFrame Integrity Check:** Perform comprehensive checks on your DataFrame for NaN values, infinity values, duplicates, and more.\r\n\r\n## Installation\r\n\r\nYou can install Little Data Preprocessor using pip:\r\n\r\n```bash\r\npip install little_data_preprocessor\r\n```\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A pandas dataframe preprocessing python package",
"version": "1.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/Uncle-Solomon/little_preprocessor/issues",
"Documentation": "https://github.com/Uncle-Solomon/little_preprocessor/wiki",
"Homepage": "https://github.com/Uncle-Solomon/little_preprocessor",
"Source Code": "https://github.com/Uncle-Solomon/little_preprocessor"
},
"split_keywords": [
"python",
" pandas",
" preprocessing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f7c2ed978ea598e28e88ac1220ca24cd2f385a68da2a52d3a80423a91f27ba32",
"md5": "d5b9fedd4345c92a78d2f9cb921fbc7d",
"sha256": "c721c19d02be870266e168797dfd63de7b9d8fb816e6b842bf4d33334238df19"
},
"downloads": -1,
"filename": "little_data_preprocessor-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d5b9fedd4345c92a78d2f9cb921fbc7d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3094,
"upload_time": "2025-01-07T23:45:02",
"upload_time_iso_8601": "2025-01-07T23:45:02.767553Z",
"url": "https://files.pythonhosted.org/packages/f7/c2/ed978ea598e28e88ac1220ca24cd2f385a68da2a52d3a80423a91f27ba32/little_data_preprocessor-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f8205ca17f681efb1aeddb408803d9c9970a059bec4fb3e2dd7a985f450cfa74",
"md5": "6f92b39fb7237b14dbe9faa5ec79e59f",
"sha256": "a51773d074f829ea16bb73d8f4f762e3d863b3f69b7f9f92ffc049ee48c49421"
},
"downloads": -1,
"filename": "little_data_preprocessor-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "6f92b39fb7237b14dbe9faa5ec79e59f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2765,
"upload_time": "2025-01-07T23:45:05",
"upload_time_iso_8601": "2025-01-07T23:45:05.049893Z",
"url": "https://files.pythonhosted.org/packages/f8/20/5ca17f681efb1aeddb408803d9c9970a059bec4fb3e2dd7a985f450cfa74/little_data_preprocessor-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-07 23:45:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Uncle-Solomon",
"github_project": "little_preprocessor",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "black",
"specs": [
[
"==",
"24.4.2"
]
]
},
{
"name": "click",
"specs": [
[
"==",
"8.1.7"
]
]
},
{
"name": "mypy-extensions",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"2.0.1"
]
]
},
{
"name": "packaging",
"specs": [
[
"==",
"24.1"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.2"
]
]
},
{
"name": "pathspec",
"specs": [
[
"==",
"0.12.1"
]
]
},
{
"name": "platformdirs",
"specs": [
[
"==",
"4.2.2"
]
]
},
{
"name": "python-dateutil",
"specs": [
[
"==",
"2.9.0.post0"
]
]
},
{
"name": "pytz",
"specs": [
[
"==",
"2024.1"
]
]
},
{
"name": "six",
"specs": [
[
"==",
"1.16.0"
]
]
},
{
"name": "tomli",
"specs": [
[
"==",
"2.0.1"
]
]
},
{
"name": "typing_extensions",
"specs": [
[
"==",
"4.12.2"
]
]
},
{
"name": "tzdata",
"specs": [
[
"==",
"2024.1"
]
]
}
],
"lcname": "little-data-preprocessor"
}