locate-pixelcolor-cupy


Namelocate-pixelcolor-cupy JSON
Version 0.11 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/locate_pixelcolor_cupy
SummaryDetects colors in images up to 8 times as fast as NumPy
upload_time2023-04-15 00:32:48
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords cupy image search rgb
VCS
bugtrack_url
requirements cupy numpy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Detects colors in images up to 8 times as fast as NumPy  

### pip install locate-pixelcolor-cupy
If you haven't installed cupy yet, I recommend you installing it using conda:
conda install -c conda-forge cupy

#### Tested against Windows 10 / Python 3.10 / Anaconda



### Usage

```python

import numpy as np
import cv2
from locate_pixelcolor_cupy import search_colors
# 4525 x 6623 x 3 picture https://www.pexels.com/pt-br/foto/foto-da-raposa-sentada-no-chao-2295744/
picx = r"C:\Users\hansc\Downloads\pexels-alex-andrews-2295744.jpg"
pic = cv2.imread(picx)
colors0 = np.array([[255, 255, 255]], dtype=np.uint8)
resus0 = search_colors(pic=pic, colors=colors0)
colors1 = np.array(
    [
        (66, 71, 69),
        (62, 67, 65),
        (144, 155, 153),
        (52, 57, 55),
        (127, 138, 136),
        (53, 58, 56),
        (51, 56, 54),
        (32, 27, 18),
        (24, 17, 8),
    ],
    dtype=np.uint8,
)
resus1 = search_colors(pic=pic, colors=colors1)
####################################################################
%timeit resus0 = search_colors(pic=pic, colors=colors0)
78.2 ms ± 1.29 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

b,g,r = pic[...,0],pic[...,1],pic[...,2]
%timeit np.where(((b==255)&(g==255)&(r==255)))
150 ms ± 209 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
####################################################################
%timeit resus1 = search_colors(pic=pic, colors=colors1)
139 ms ± 9.78 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit np.where(((b==66)&(g==71)&(r==69))|((b==62)&(g==67)&(r==65))|((b==144)&(g==155)&(r==153))|((b==52)&(g==57)&(r==55))|((b==127)&(g==138)&(r==136))|((b==53)&(g==58)&(r==56))|((b==51)&(g==56)&(r==54))|((b==32)&(g==27)&(r==18))|((b==24)&(g==17)&(r==8)))
1 s ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
####################################################################
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/locate_pixelcolor_cupy",
    "name": "locate-pixelcolor-cupy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Cupy,image,search,rgb",
    "author": "Johannes Fischer",
    "author_email": "aulasparticularesdealemaosp@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/90/c0/5470fc1f2d91effbee67ef32769044967cc392faa2900890bb2c6213b1b2/locate_pixelcolor_cupy-0.11.tar.gz",
    "platform": null,
    "description": "# Detects colors in images up to 8 times as fast as NumPy  \r\n\r\n### pip install locate-pixelcolor-cupy\r\nIf you haven't installed cupy yet, I recommend you installing it using conda:\r\nconda install -c conda-forge cupy\r\n\r\n#### Tested against Windows 10 / Python 3.10 / Anaconda\r\n\r\n\r\n\r\n### Usage\r\n\r\n```python\r\n\r\nimport numpy as np\r\nimport cv2\r\nfrom locate_pixelcolor_cupy import search_colors\r\n# 4525 x 6623 x 3 picture https://www.pexels.com/pt-br/foto/foto-da-raposa-sentada-no-chao-2295744/\r\npicx = r\"C:\\Users\\hansc\\Downloads\\pexels-alex-andrews-2295744.jpg\"\r\npic = cv2.imread(picx)\r\ncolors0 = np.array([[255, 255, 255]], dtype=np.uint8)\r\nresus0 = search_colors(pic=pic, colors=colors0)\r\ncolors1 = np.array(\r\n    [\r\n        (66, 71, 69),\r\n        (62, 67, 65),\r\n        (144, 155, 153),\r\n        (52, 57, 55),\r\n        (127, 138, 136),\r\n        (53, 58, 56),\r\n        (51, 56, 54),\r\n        (32, 27, 18),\r\n        (24, 17, 8),\r\n    ],\r\n    dtype=np.uint8,\r\n)\r\nresus1 = search_colors(pic=pic, colors=colors1)\r\n####################################################################\r\n%timeit resus0 = search_colors(pic=pic, colors=colors0)\r\n78.2 ms \u00c2\u00b1 1.29 ms per loop (mean \u00c2\u00b1 std. dev. of 7 runs, 1 loop each)\r\n\r\nb,g,r = pic[...,0],pic[...,1],pic[...,2]\r\n%timeit np.where(((b==255)&(g==255)&(r==255)))\r\n150 ms \u00c2\u00b1 209 \u00c2\u00b5s per loop (mean \u00c2\u00b1 std. dev. of 7 runs, 10 loops each)\r\n####################################################################\r\n%timeit resus1 = search_colors(pic=pic, colors=colors1)\r\n139 ms \u00c2\u00b1 9.78 ms per loop (mean \u00c2\u00b1 std. dev. of 7 runs, 1 loop each)\r\n\r\n%timeit np.where(((b==66)&(g==71)&(r==69))|((b==62)&(g==67)&(r==65))|((b==144)&(g==155)&(r==153))|((b==52)&(g==57)&(r==55))|((b==127)&(g==138)&(r==136))|((b==53)&(g==58)&(r==56))|((b==51)&(g==56)&(r==54))|((b==32)&(g==27)&(r==18))|((b==24)&(g==17)&(r==8)))\r\n1 s \u00c2\u00b1 16.1 ms per loop (mean \u00c2\u00b1 std. dev. of 7 runs, 1 loop each)\r\n####################################################################\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Detects colors in images up to 8 times as fast as NumPy",
    "version": "0.11",
    "split_keywords": [
        "cupy",
        "image",
        "search",
        "rgb"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2aa4a2817cd735cdbfa00cc13a8c6bf3d8ef488ceba131d186ae3643e0095c8f",
                "md5": "e3659f6aa9f669799d2fcab904daca40",
                "sha256": "b6ae5d31a4293e8f0c85d8cd1c36bf542b3f2deb55d36c98cb46cb3337fbb4c7"
            },
            "downloads": -1,
            "filename": "locate_pixelcolor_cupy-0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e3659f6aa9f669799d2fcab904daca40",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6146,
            "upload_time": "2023-04-15T00:32:46",
            "upload_time_iso_8601": "2023-04-15T00:32:46.231973Z",
            "url": "https://files.pythonhosted.org/packages/2a/a4/a2817cd735cdbfa00cc13a8c6bf3d8ef488ceba131d186ae3643e0095c8f/locate_pixelcolor_cupy-0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90c05470fc1f2d91effbee67ef32769044967cc392faa2900890bb2c6213b1b2",
                "md5": "0830d1573fd3ee7bc69a0fa0d8672142",
                "sha256": "db32de62358cea58d57c446032dcf55a7709ef0628310ecdd0a22baec921dbcc"
            },
            "downloads": -1,
            "filename": "locate_pixelcolor_cupy-0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "0830d1573fd3ee7bc69a0fa0d8672142",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4671,
            "upload_time": "2023-04-15T00:32:48",
            "upload_time_iso_8601": "2023-04-15T00:32:48.758483Z",
            "url": "https://files.pythonhosted.org/packages/90/c0/5470fc1f2d91effbee67ef32769044967cc392faa2900890bb2c6213b1b2/locate_pixelcolor_cupy-0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-15 00:32:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "locate_pixelcolor_cupy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "cupy",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        }
    ],
    "lcname": "locate-pixelcolor-cupy"
}
        
Elapsed time: 0.35153s