lspopt


Namelspopt JSON
Version 1.3.0 PyPI version JSON
download
home_pagehttps://github.com/hbldh/lspopt
SummaryA Python implementation of a multitaper window method for estimating Wigner spectra for certain locally stationary processes
upload_time2023-01-24 11:47:37
maintainer
docs_urlNone
authorHenrik Blidh
requires_python>=3.7
licenseMIT
keywords mathematical statistics multitaper spectrogram
VCS
bugtrack_url
requirements numpy scipy
Travis-CI No Travis.
coveralls test coverage
            
# LSPOpt

![Build and Test](https://github.com/hbldh/lspopt/workflows/Build%20and%20Test/badge.svg)
[![PyPI version](https://img.shields.io/pypi/v/lspopt.svg)](https://pypi.org/project/lspopt/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

This module is a Python implementation of the multitaper window method 
described in [\[1\]](#references) for estimating Wigner spectra for certain locally
stationary processes.

Abstract from [\[1\]](#references):

> This paper investigates the time-discrete multitapers that give a mean square error optimal Wigner spectrum estimate for a class
> of locally stationary processes (LSPs). The accuracy in the estimation of the time-variable Wigner spectrum of the LSP is evaluated
> and compared with other frequently used methods. The optimal multitapers are also approximated by Hermite functions, which is
> computationally more efficient, and the errors introduced by this approximation are studied. Additionally, the number of windows
> included in a multitaper spectrum estimate is often crucial and an investigation of the error caused by limiting this number is made.
> Finally, the same optimal set of weights can be stored and utilized for different window lengths. As a result, the optimal multitapers
> are shown to be well approximated by Hermite functions, and a limited number of windows can be used for a mean square error
> optimal spectrogram estimate.
    
## Installation

Install via pip:

    pip install lspopt

If you prefer to use `conda`, see [instructions in this repo](https://github.com/conda-forge/lspopt-feedstock).

## Testing

Test with `pytest`:

    pytest tests/

See test badge at the top of this README for link to test coverage and reports.

## Usage

To generate the taper windows only, use the `lspopt` method:

```python
from lspopt import lspopt
H, w = lspopt(N=256, c_parameter=20.0)
```
    
There is also a convenience method for using the [SciPy spectrogram method](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html#scipy.signal.spectrogram)
with the `lspopt` multitaper windows:

```python
from lspopt import spectrogram_lspopt
f, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)
```
    
This can then be plotted with e.g. [matplotlib](http://matplotlib.org/).

### Example

One can generate a [chirp](https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.chirp.html)
process realisation and run spectrogram methods on this. 

```python
import numpy as np
from scipy.signal import chirp, spectrogram
import matplotlib.pyplot as plt

from lspopt.lsp import spectrogram_lspopt

fs = 10000
N = 100000
amp = 2 * np.sqrt(2)
noise_power = 0.001 * fs / 2
time = np.arange(N) / fs
freq = np.linspace(1000, 2000, N)
x = amp * chirp(time, 1000, 2.0, 6000, method='quadratic') + \
    np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

f, t, Sxx = spectrogram(x, fs)

ax = plt.subplot(211)
ax.pcolormesh(t, f, Sxx)
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')

f, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)

ax = plt.subplot(212)
ax.pcolormesh(t, f, Sxx)
ax.set_ylabel('Frequency [Hz]')
ax.set_xlabel('Time [sec]')

plt.tight_layout()
plt.show()
```

![Spectrogram plot](https://github.com/hbldh/lspopt/blob/master/plot.png "Top: Using SciPy's spectrogram method. Bottom: Using LSPOpt's spectrogram solution.")

*Top: Using SciPy's spectrogram method. Bottom: Using LSPOpt's spectrogram solution.*

## References

\[1\] [Hansson-Sandsten, M. (2011). Optimal multitaper Wigner spectrum 
estimation of a class of locally stationary processes using Hermite functions. 
EURASIP Journal on Advances in Signal Processing, 2011, 10.](https://dx.doi.org/10.1155/2011/980805)

# Changelog
All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [1.3.0] - 2023-01-24

### Changed

- Modified test matrix in CI

### Removed

- Support for Python 2.7 and 3.6.
- Dependency on `six`.


## [1.2.0] - 2022-06-08

### Added

- New plot file

### Fixed

- Source distribution was broken on PyPI. Modified `MANIFEST.in` to correct that (#5 and #6)
- Url to missing plot file
- Fixed some incorrect int declarations using `1e3` notation

### Removed

- Removed Pipfile

## [1.1.1] - 2020-09-28

### Added

- Added `CHANGELOG.md`

### Changed

- Change CI from Azure Devops to Github Actions


## [1.1.0] - 2019-06-19

### Added

- First PyPI-released version


## [1.0.0] - 2016-08-22

### Added

- Regarded as a feature-complete, stable library.


[Unreleased]: https://github.com/hbldh/lspopt/compare/v1.2.0...HEAD
[1.2.0]: https://github.com/hbldh/lspopt/compare/v1.1.1...v1.2.0
[1.1.1]: https://github.com/hbldh/lspopt/compare/v1.1.0...v1.1.1
[1.1.0]: https://github.com/hbldh/lspopt/compare/v1.0.0...v1.1.0

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hbldh/lspopt",
    "name": "lspopt",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "Mathematical Statistics,Multitaper,Spectrogram",
    "author": "Henrik Blidh",
    "author_email": "henrik.blidh@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5d/1a/1d95d1f3e7445eaafa5b61f14ec06ab0252bafcfead3cd1fb6b5c8955fd6/lspopt-1.3.0.tar.gz",
    "platform": null,
    "description": "\n# LSPOpt\n\n![Build and Test](https://github.com/hbldh/lspopt/workflows/Build%20and%20Test/badge.svg)\n[![PyPI version](https://img.shields.io/pypi/v/lspopt.svg)](https://pypi.org/project/lspopt/)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)\n\nThis module is a Python implementation of the multitaper window method \ndescribed in [\\[1\\]](#references) for estimating Wigner spectra for certain locally\nstationary processes.\n\nAbstract from [\\[1\\]](#references):\n\n> This paper investigates the time-discrete multitapers that give a mean square error optimal Wigner spectrum estimate for a class\n> of locally stationary processes (LSPs). The accuracy in the estimation of the time-variable Wigner spectrum of the LSP is evaluated\n> and compared with other frequently used methods. The optimal multitapers are also approximated by Hermite functions, which is\n> computationally more efficient, and the errors introduced by this approximation are studied. Additionally, the number of windows\n> included in a multitaper spectrum estimate is often crucial and an investigation of the error caused by limiting this number is made.\n> Finally, the same optimal set of weights can be stored and utilized for different window lengths. As a result, the optimal multitapers\n> are shown to be well approximated by Hermite functions, and a limited number of windows can be used for a mean square error\n> optimal spectrogram estimate.\n    \n## Installation\n\nInstall via pip:\n\n    pip install lspopt\n\nIf you prefer to use `conda`, see [instructions in this repo](https://github.com/conda-forge/lspopt-feedstock).\n\n## Testing\n\nTest with `pytest`:\n\n    pytest tests/\n\nSee test badge at the top of this README for link to test coverage and reports.\n\n## Usage\n\nTo generate the taper windows only, use the `lspopt` method:\n\n```python\nfrom lspopt import lspopt\nH, w = lspopt(N=256, c_parameter=20.0)\n```\n    \nThere is also a convenience method for using the [SciPy spectrogram method](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html#scipy.signal.spectrogram)\nwith the `lspopt` multitaper windows:\n\n```python\nfrom lspopt import spectrogram_lspopt\nf, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)\n```\n    \nThis can then be plotted with e.g. [matplotlib](http://matplotlib.org/).\n\n### Example\n\nOne can generate a [chirp](https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.chirp.html)\nprocess realisation and run spectrogram methods on this. \n\n```python\nimport numpy as np\nfrom scipy.signal import chirp, spectrogram\nimport matplotlib.pyplot as plt\n\nfrom lspopt.lsp import spectrogram_lspopt\n\nfs = 10000\nN = 100000\namp = 2 * np.sqrt(2)\nnoise_power = 0.001 * fs / 2\ntime = np.arange(N) / fs\nfreq = np.linspace(1000, 2000, N)\nx = amp * chirp(time, 1000, 2.0, 6000, method='quadratic') + \\\n    np.random.normal(scale=np.sqrt(noise_power), size=time.shape)\n\nf, t, Sxx = spectrogram(x, fs)\n\nax = plt.subplot(211)\nax.pcolormesh(t, f, Sxx)\nax.set_ylabel('Frequency [Hz]')\nax.set_xlabel('Time [sec]')\n\nf, t, Sxx = spectrogram_lspopt(x, fs, c_parameter=20.0)\n\nax = plt.subplot(212)\nax.pcolormesh(t, f, Sxx)\nax.set_ylabel('Frequency [Hz]')\nax.set_xlabel('Time [sec]')\n\nplt.tight_layout()\nplt.show()\n```\n\n![Spectrogram plot](https://github.com/hbldh/lspopt/blob/master/plot.png \"Top: Using SciPy's spectrogram method. Bottom: Using LSPOpt's spectrogram solution.\")\n\n*Top: Using SciPy's spectrogram method. Bottom: Using LSPOpt's spectrogram solution.*\n\n## References\n\n\\[1\\] [Hansson-Sandsten, M. (2011). Optimal multitaper Wigner spectrum \nestimation of a class of locally stationary processes using Hermite functions. \nEURASIP Journal on Advances in Signal Processing, 2011, 10.](https://dx.doi.org/10.1155/2011/980805)\n\n# Changelog\nAll notable changes to this project will be documented in this file.\n\nThe format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),\nand this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).\n\n## [1.3.0] - 2023-01-24\n\n### Changed\n\n- Modified test matrix in CI\n\n### Removed\n\n- Support for Python 2.7 and 3.6.\n- Dependency on `six`.\n\n\n## [1.2.0] - 2022-06-08\n\n### Added\n\n- New plot file\n\n### Fixed\n\n- Source distribution was broken on PyPI. Modified `MANIFEST.in` to correct that (#5 and #6)\n- Url to missing plot file\n- Fixed some incorrect int declarations using `1e3` notation\n\n### Removed\n\n- Removed Pipfile\n\n## [1.1.1] - 2020-09-28\n\n### Added\n\n- Added `CHANGELOG.md`\n\n### Changed\n\n- Change CI from Azure Devops to Github Actions\n\n\n## [1.1.0] - 2019-06-19\n\n### Added\n\n- First PyPI-released version\n\n\n## [1.0.0] - 2016-08-22\n\n### Added\n\n- Regarded as a feature-complete, stable library.\n\n\n[Unreleased]: https://github.com/hbldh/lspopt/compare/v1.2.0...HEAD\n[1.2.0]: https://github.com/hbldh/lspopt/compare/v1.1.1...v1.2.0\n[1.1.1]: https://github.com/hbldh/lspopt/compare/v1.1.0...v1.1.1\n[1.1.0]: https://github.com/hbldh/lspopt/compare/v1.0.0...v1.1.0\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python implementation of a multitaper window method for estimating Wigner spectra for certain locally stationary processes",
    "version": "1.3.0",
    "split_keywords": [
        "mathematical statistics",
        "multitaper",
        "spectrogram"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ec62174bf4acf893a3a181ca295ac7e6a1fda3b376c010dd42a69780226fec32",
                "md5": "62a8c4edd2a0fae83865f801fa26845c",
                "sha256": "ab2521afa71d1db4bd5c503443a8edaded6dfb99020c0928272875f97f3b834a"
            },
            "downloads": -1,
            "filename": "lspopt-1.3.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "62a8c4edd2a0fae83865f801fa26845c",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 35122,
            "upload_time": "2023-01-24T11:47:36",
            "upload_time_iso_8601": "2023-01-24T11:47:36.155173Z",
            "url": "https://files.pythonhosted.org/packages/ec/62/174bf4acf893a3a181ca295ac7e6a1fda3b376c010dd42a69780226fec32/lspopt-1.3.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d1a1d95d1f3e7445eaafa5b61f14ec06ab0252bafcfead3cd1fb6b5c8955fd6",
                "md5": "55c3586a73a7647148195dee52b1bb3f",
                "sha256": "288748dd48598f74d989551cc87877a4b17f7f923c89c09f39b7e0b30970c735"
            },
            "downloads": -1,
            "filename": "lspopt-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "55c3586a73a7647148195dee52b1bb3f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 39280,
            "upload_time": "2023-01-24T11:47:37",
            "upload_time_iso_8601": "2023-01-24T11:47:37.695625Z",
            "url": "https://files.pythonhosted.org/packages/5d/1a/1d95d1f3e7445eaafa5b61f14ec06ab0252bafcfead3cd1fb6b5c8955fd6/lspopt-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-24 11:47:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hbldh",
    "github_project": "lspopt",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.6"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.3"
                ]
            ]
        }
    ],
    "lcname": "lspopt"
}
        
Elapsed time: 0.07096s