# LuminaNet 🌟
**Illuminate Your AI Journey with Pure Python Deep Learning**
[](https://pypi.org/project/luminanet/)
[](https://pypi.org/project/luminanet/)
[](https://opensource.org/licenses/MIT)
[](https://termux.com/)
[](https://github.com/yourusername/luminanet/stargazers)
**LuminaNet** adalah framework deep learning pure Python yang dirancang untuk edukasi dan production dengan dependencies minimal. Hanya menggunakan **NumPy, SciPy, NLTK, dan Sastrawi**.
## 🎯 **Why LuminaNet?**
| Feature | LuminaNet | Others |
|---------|-----------|--------|
| **Dependencies** | 🟢 4 libraries | 🔴 10+ libraries |
| **Termux Support** | 🟢 Perfect | 🔴 Limited |
| **Pure Python** | 🟢 100% | 🟡 Mixed |
| **Educational** | 🟢 Excellent | 🟡 Good |
| **Indonesian NLP** | 🟢 Built-in | 🔴 None |
## 🚀 **Quick Installation**
### From PyPI
```bash
pip install luminanet
```
### From Source
```bash
git clone https://github.com/yourusername/luminanet.git
cd luminanet
pip install -e .
```
### For Termux (Android)
```bash
pkg install python python-pip
pip install numpy scipy nltk sastrawi
pip install luminanet
```
## 💡 **Quick Start**
```python
from luminanet import NeuralNetwork, Dense
import numpy as np
# XOR Example
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
model = NeuralNetwork("XORSolver")
model.add(Dense(4, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy')
model.train(X, y, epochs=1000)
print(model.predict(X))
```
## 🤝 **Contributing**
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## 📄 **License**
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 👨💻 **Author**
Your Name - [GitHub](https://github.com/yourusername) - your.email@example.com
## 🙏 **Acknowledgments**
- NumPy team untuk komputasi numerik
- NLTK team untuk NLP capabilities  
- Sastrawi team untuk Indonesian language support
- Python community untuk ecosystem yang luar biasa
            
         
        Raw data
        
            {
    "_id": null,
    "home_page": null,
    "name": "luminanet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "deep learning, neural networks, machine learning, pure python, termux, numpy, educational, luminanet",
    "author": "Your Name",
    "author_email": "your.email@example.com",
    "download_url": "https://files.pythonhosted.org/packages/f2/87/6634fd98b2b57883c03a427ddae3c98e2856591b8772d243d414fd2f6388/luminanet-1.0.0.tar.gz",
    "platform": null,
    "description": "\n# LuminaNet \ud83c\udf1f\n\n**Illuminate Your AI Journey with Pure Python Deep Learning**\n\n[](https://pypi.org/project/luminanet/)\n[](https://pypi.org/project/luminanet/)\n[](https://opensource.org/licenses/MIT)\n[](https://termux.com/)\n[](https://github.com/yourusername/luminanet/stargazers)\n\n**LuminaNet** adalah framework deep learning pure Python yang dirancang untuk edukasi dan production dengan dependencies minimal. Hanya menggunakan **NumPy, SciPy, NLTK, dan Sastrawi**.\n\n## \ud83c\udfaf **Why LuminaNet?**\n\n| Feature | LuminaNet | Others |\n|---------|-----------|--------|\n| **Dependencies** | \ud83d\udfe2 4 libraries | \ud83d\udd34 10+ libraries |\n| **Termux Support** | \ud83d\udfe2 Perfect | \ud83d\udd34 Limited |\n| **Pure Python** | \ud83d\udfe2 100% | \ud83d\udfe1 Mixed |\n| **Educational** | \ud83d\udfe2 Excellent | \ud83d\udfe1 Good |\n| **Indonesian NLP** | \ud83d\udfe2 Built-in | \ud83d\udd34 None |\n\n## \ud83d\ude80 **Quick Installation**\n\n### From PyPI\n```bash\npip install luminanet\n```\n\n### From Source\n```bash\ngit clone https://github.com/yourusername/luminanet.git\ncd luminanet\npip install -e .\n```\n\n### For Termux (Android)\n```bash\npkg install python python-pip\npip install numpy scipy nltk sastrawi\npip install luminanet\n```\n\n## \ud83d\udca1 **Quick Start**\n\n```python\nfrom luminanet import NeuralNetwork, Dense\nimport numpy as np\n\n# XOR Example\nX = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\ny = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])\n\nmodel = NeuralNetwork(\"XORSolver\")\nmodel.add(Dense(4, activation='relu'))\nmodel.add(Dense(2, activation='softmax'))\nmodel.compile(optimizer='adam', loss='categorical_crossentropy')\nmodel.train(X, y, epochs=1000)\n\nprint(model.predict(X))\n```\n\n\n## \ud83e\udd1d **Contributing**\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## \ud83d\udcc4 **License**\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\udc68\u200d\ud83d\udcbb **Author**\n\nYour Name - [GitHub](https://github.com/yourusername) - your.email@example.com\n\n## \ud83d\ude4f **Acknowledgments**\n\n- NumPy team untuk komputasi numerik\n- NLTK team untuk NLP capabilities  \n- Sastrawi team untuk Indonesian language support\n- Python community untuk ecosystem yang luar biasa\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "LuminaNet: Pure Python Deep Learning Framework - Illuminate AI with Minimal Dependencies",
    "version": "1.0.0",
    "project_urls": {
        "Bug Reports": "https://github.com/iyazkasep/luminanet/issues",
        "Source": "https://github.com/iyazkasep/luminanet"
    },
    "split_keywords": [
        "deep learning",
        " neural networks",
        " machine learning",
        " pure python",
        " termux",
        " numpy",
        " educational",
        " luminanet"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac044f6be178728d15c700b1e327400329eb72f53f81dd00930fc58dc36d3eb9",
                "md5": "82fedf24e6299be70f7f6ce9b43d522f",
                "sha256": "3e3def0c29bec0f5052a62aaf4c0e1cae84c7e33182c24d362d04ee418508e30"
            },
            "downloads": -1,
            "filename": "luminanet-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "82fedf24e6299be70f7f6ce9b43d522f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 23876,
            "upload_time": "2025-11-04T04:53:23",
            "upload_time_iso_8601": "2025-11-04T04:53:23.492587Z",
            "url": "https://files.pythonhosted.org/packages/ac/04/4f6be178728d15c700b1e327400329eb72f53f81dd00930fc58dc36d3eb9/luminanet-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f2876634fd98b2b57883c03a427ddae3c98e2856591b8772d243d414fd2f6388",
                "md5": "a96e098c8b0fe82068a068f43d395d37",
                "sha256": "6f2dd1e2c4b739d420c0b2d00f8722766842a35090dc91139e2c113b33c01add"
            },
            "downloads": -1,
            "filename": "luminanet-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a96e098c8b0fe82068a068f43d395d37",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 19722,
            "upload_time": "2025-11-04T04:53:25",
            "upload_time_iso_8601": "2025-11-04T04:53:25.415367Z",
            "url": "https://files.pythonhosted.org/packages/f2/87/6634fd98b2b57883c03a427ddae3c98e2856591b8772d243d414fd2f6388/luminanet-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-04 04:53:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "iyazkasep",
    "github_project": "luminanet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "nltk",
            "specs": [
                [
                    ">=",
                    "3.6.0"
                ]
            ]
        },
        {
            "name": "sastrawi",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        }
    ],
    "lcname": "luminanet"
}