magneto-python


Namemagneto-python JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto
SummaryMagneto Python library
upload_time2025-01-13 21:50:06
maintainerNone
docs_urlNone
authorYurong Liu, Eduardo Pena, Eden Wu, Aécio Santos, Roque Lopez
requires_python>=3.9
licenseApache-2.0
keywords bdf data integration nyu
VCS
bugtrack_url
requirements fuzzywuzzy openai ollama python-dotenv scipy sentence_transformers tiktoken transformers torch mmh3 valentine
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Magneto

Magneto is an innovative framework designed to enhance schema matching (SM) by intelligently combining small, pre-trained language models (SLMs) with large language models (LLMs). Our approach is structured to be both cost-effective and broadly applicable.

## Installation


You can install the latest stable version of Magneto from [PyPI](https://pypi.org/project/magneto-python/):

```
pip install magneto-python
```


## Usage
After the installation, you can use the stand-alone version of Magneto like this:

```Python
from magneto import Magneto
import pandas as pd

source = pd.DataFrame({"column_1": ["a1", "b1", "c1"], "col_2": ["a2", "b2", "c2"]})
target = pd.DataFrame({"column_1a": ["a1", "b1", "c1"], "col2": ["a2", "b2", "c2"]})

mode = "header_values_verbose"
mag = Magneto(encoding_mode=mode)
matches = mag.get_matches(source, target)

print(matches)
```

See our [GitHub repository](https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto) for more examples.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto",
    "name": "magneto-python",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "bdf, data integration, nyu",
    "author": "Yurong Liu, Eduardo Pena, Eden Wu, A\u00e9cio Santos, Roque Lopez",
    "author_email": "yurong.liu@nyu.edu, em5487@nyu.edu, eden.wu@nyu.edu, aecio.santos@nyu.edu, rlopez@nyu.edu",
    "download_url": "https://files.pythonhosted.org/packages/81/3e/0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3/magneto_python-0.1.1.tar.gz",
    "platform": null,
    "description": "# Magneto\n\nMagneto is an innovative framework designed to enhance schema matching (SM) by intelligently combining small, pre-trained language models (SLMs) with large language models (LLMs). Our approach is structured to be both cost-effective and broadly applicable.\n\n## Installation\n\n\nYou can install the latest stable version of Magneto from [PyPI](https://pypi.org/project/magneto-python/):\n\n```\npip install magneto-python\n```\n\n\n## Usage\nAfter the installation, you can use the stand-alone version of Magneto like this:\n\n```Python\nfrom magneto import Magneto\nimport pandas as pd\n\nsource = pd.DataFrame({\"column_1\": [\"a1\", \"b1\", \"c1\"], \"col_2\": [\"a2\", \"b2\", \"c2\"]})\ntarget = pd.DataFrame({\"column_1a\": [\"a1\", \"b1\", \"c1\"], \"col2\": [\"a2\", \"b2\", \"c2\"]})\n\nmode = \"header_values_verbose\"\nmag = Magneto(encoding_mode=mode)\nmatches = mag.get_matches(source, target)\n\nprint(matches)\n```\n\nSee our [GitHub repository](https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto) for more examples.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Magneto Python library",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto"
    },
    "split_keywords": [
        "bdf",
        " data integration",
        " nyu"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "309c83720cb42859d40d96719cd8180dd323026bb4b0e5b7536caeec34063aab",
                "md5": "16776e3916b1504e5892a52bab91b4a4",
                "sha256": "7433b1b0a2541341a8f2d3b3c28e74228a530f1409c6e2eaeb6a06b7b6dd3298"
            },
            "downloads": -1,
            "filename": "magneto_python-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "16776e3916b1504e5892a52bab91b4a4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 24321,
            "upload_time": "2025-01-13T21:50:05",
            "upload_time_iso_8601": "2025-01-13T21:50:05.326171Z",
            "url": "https://files.pythonhosted.org/packages/30/9c/83720cb42859d40d96719cd8180dd323026bb4b0e5b7536caeec34063aab/magneto_python-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "813e0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3",
                "md5": "176e4b95ecf1e301778d38ed53db6b42",
                "sha256": "066368be47cd3e3402ad536e8782703c7d9932c0a09e5ada901200cd9a4efb49"
            },
            "downloads": -1,
            "filename": "magneto_python-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "176e4b95ecf1e301778d38ed53db6b42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 19890,
            "upload_time": "2025-01-13T21:50:06",
            "upload_time_iso_8601": "2025-01-13T21:50:06.379544Z",
            "url": "https://files.pythonhosted.org/packages/81/3e/0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3/magneto_python-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-13 21:50:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "VIDA-NYU",
    "github_project": "data-integration-eval",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "fuzzywuzzy",
            "specs": []
        },
        {
            "name": "openai",
            "specs": []
        },
        {
            "name": "ollama",
            "specs": []
        },
        {
            "name": "python-dotenv",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "sentence_transformers",
            "specs": []
        },
        {
            "name": "tiktoken",
            "specs": []
        },
        {
            "name": "transformers",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "mmh3",
            "specs": []
        },
        {
            "name": "valentine",
            "specs": []
        }
    ],
    "lcname": "magneto-python"
}
        
Elapsed time: 1.23114s