# Magneto
Magneto is an innovative framework designed to enhance schema matching (SM) by intelligently combining small, pre-trained language models (SLMs) with large language models (LLMs). Our approach is structured to be both cost-effective and broadly applicable.
## Installation
You can install the latest stable version of Magneto from [PyPI](https://pypi.org/project/magneto-python/):
```
pip install magneto-python
```
## Usage
After the installation, you can use the stand-alone version of Magneto like this:
```Python
from magneto import Magneto
import pandas as pd
source = pd.DataFrame({"column_1": ["a1", "b1", "c1"], "col_2": ["a2", "b2", "c2"]})
target = pd.DataFrame({"column_1a": ["a1", "b1", "c1"], "col2": ["a2", "b2", "c2"]})
mode = "header_values_verbose"
mag = Magneto(encoding_mode=mode)
matches = mag.get_matches(source, target)
print(matches)
```
See our [GitHub repository](https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto) for more examples.
Raw data
{
"_id": null,
"home_page": "https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto",
"name": "magneto-python",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "bdf, data integration, nyu",
"author": "Yurong Liu, Eduardo Pena, Eden Wu, A\u00e9cio Santos, Roque Lopez",
"author_email": "yurong.liu@nyu.edu, em5487@nyu.edu, eden.wu@nyu.edu, aecio.santos@nyu.edu, rlopez@nyu.edu",
"download_url": "https://files.pythonhosted.org/packages/81/3e/0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3/magneto_python-0.1.1.tar.gz",
"platform": null,
"description": "# Magneto\n\nMagneto is an innovative framework designed to enhance schema matching (SM) by intelligently combining small, pre-trained language models (SLMs) with large language models (LLMs). Our approach is structured to be both cost-effective and broadly applicable.\n\n## Installation\n\n\nYou can install the latest stable version of Magneto from [PyPI](https://pypi.org/project/magneto-python/):\n\n```\npip install magneto-python\n```\n\n\n## Usage\nAfter the installation, you can use the stand-alone version of Magneto like this:\n\n```Python\nfrom magneto import Magneto\nimport pandas as pd\n\nsource = pd.DataFrame({\"column_1\": [\"a1\", \"b1\", \"c1\"], \"col_2\": [\"a2\", \"b2\", \"c2\"]})\ntarget = pd.DataFrame({\"column_1a\": [\"a1\", \"b1\", \"c1\"], \"col2\": [\"a2\", \"b2\", \"c2\"]})\n\nmode = \"header_values_verbose\"\nmag = Magneto(encoding_mode=mode)\nmatches = mag.get_matches(source, target)\n\nprint(matches)\n```\n\nSee our [GitHub repository](https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto) for more examples.\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Magneto Python library",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/VIDA-NYU/data-integration-eval/tree/main/algorithms/magneto"
},
"split_keywords": [
"bdf",
" data integration",
" nyu"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "309c83720cb42859d40d96719cd8180dd323026bb4b0e5b7536caeec34063aab",
"md5": "16776e3916b1504e5892a52bab91b4a4",
"sha256": "7433b1b0a2541341a8f2d3b3c28e74228a530f1409c6e2eaeb6a06b7b6dd3298"
},
"downloads": -1,
"filename": "magneto_python-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "16776e3916b1504e5892a52bab91b4a4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 24321,
"upload_time": "2025-01-13T21:50:05",
"upload_time_iso_8601": "2025-01-13T21:50:05.326171Z",
"url": "https://files.pythonhosted.org/packages/30/9c/83720cb42859d40d96719cd8180dd323026bb4b0e5b7536caeec34063aab/magneto_python-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "813e0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3",
"md5": "176e4b95ecf1e301778d38ed53db6b42",
"sha256": "066368be47cd3e3402ad536e8782703c7d9932c0a09e5ada901200cd9a4efb49"
},
"downloads": -1,
"filename": "magneto_python-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "176e4b95ecf1e301778d38ed53db6b42",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 19890,
"upload_time": "2025-01-13T21:50:06",
"upload_time_iso_8601": "2025-01-13T21:50:06.379544Z",
"url": "https://files.pythonhosted.org/packages/81/3e/0b93bb167c3df9bff54e1df1c1b10fc3ce9732deca8d2cefec92c89143f3/magneto_python-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-13 21:50:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "VIDA-NYU",
"github_project": "data-integration-eval",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "fuzzywuzzy",
"specs": []
},
{
"name": "openai",
"specs": []
},
{
"name": "ollama",
"specs": []
},
{
"name": "python-dotenv",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "sentence_transformers",
"specs": []
},
{
"name": "tiktoken",
"specs": []
},
{
"name": "transformers",
"specs": []
},
{
"name": "torch",
"specs": []
},
{
"name": "mmh3",
"specs": []
},
{
"name": "valentine",
"specs": []
}
],
"lcname": "magneto-python"
}