<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<body>
<h1>π <strong>MapMiner</strong> </h1>
<p>
<a href="https://colab.research.google.com/drive/1steVa5hY0SqUabvFLb0J4ypRWgSs7io9?usp=sharing" target="_blank">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/>
</a>
<img src="https://img.shields.io/badge/Python-3.x-blue.svg?style=flat-square&logo=python" alt="Python">
<img src="https://img.shields.io/badge/Xarray-0.18+-orange.svg?style=flat-square&logo=xarray" alt="Xarray">
<img src="https://img.shields.io/badge/Dask-Powered-yellow.svg?style=flat-square&logo=dask" alt="Dask">
<img src="https://img.shields.io/badge/Numba-Accelerated-green.svg?style=flat-square&logo=numba" alt="Numba">
<img src="https://img.shields.io/badge/Selenium-Automated-informational.svg?style=flat-square&logo=selenium" alt="Selenium">
</p>
<p><strong>MapMiner</strong> is a geospatial tool designed to efficiently download and process geospatial data and metadata from various sources. It leverages powerful Python libraries like <strong>Selenium</strong>, <strong>Dask</strong>, <strong>Numba</strong>, and <strong>Xarray</strong> to provide high-performance data retrieval and processing capabilities for geospatial analysis and visualization.</p><br>
<h2>π <strong>Key Features</strong></h2>
<ul>
<li><strong>π Selenium:</strong> Automated web interactions for metadata extraction.</li>
<li><strong>βοΈ Dask:</strong> Distributed computing to manage large datasets.</li>
<li><strong>π Numba:</strong> JIT compilation for accelerating numerical computations.</li>
<li><strong>π Xarray:</strong> Multi-dimensional array data handling for seamless integration.</li>
</ul><br><h2>π <strong>Supported Datasets</strong></h2>
<p>MapMiner supports a variety of geospatial datasets across multiple categories:</p>
<div>
| Category | Datasets |
|-------------------------------------|---------------------------------------------------------------------------|
| π **Satellite** | `Sentinel-2`, `Sentinel-1`, `MODIS`, `Landsat` |
| π **Aerial** | `NAIP` |
| πΊοΈ **Basemap** | `Google`, `ESRI` |
| π **Vectors** | `Google Building Footprint`, `OSM` |
| ποΈ **DEM (Digital Elevation Model)** | `Copernicus DEM 30m`, `ALOS DEM` |
| π **LULC (Land Use Land Cover)** | `ESRI LULC` |
| πΎ **Crop Layer** | `CDL Crop Mask` |
| π **Real-Time** | `Google Maps Real-Time Traffic` |
<h2>π <strong>Installation</strong></h2>
<p>Ensure you have the necessary dependencies installed:</p>
<pre><code class="highlight">pip3 install mapminer</code></pre>
<h2>π <strong>Usage</strong></h2>
<p>MapMiner provides multiple classes to fetch and process different types of geospatial data:</p>
<h3><strong>1οΈβ£ GoogleBaseMapMiner</strong></h3>
<pre><code>from mapminer.miner import GoogleBaseMapMiner
miner = GoogleBaseMapMiner()
ds = miner.fetch(lat=40.748817, lon=-73.985428, radius=500)</code></pre>
<h3><strong>2οΈβ£ CDLMiner</strong></h3>
<pre><code>from mapminer.miner import CDLMiner
miner = CDLMiner()
ds = miner.fetch(lon=-95.665, lat=39.8283, radius=10000, daterange="2024-01-01/2024-01-10")</code></pre>
<h3><strong>3οΈβ£ GoogleBuildingMiner</strong></h3>
<pre><code>from mapminer.miner import GoogleBuildingMiner
miner = GoogleBuildingMiner()
ds = miner.fetch(lat=34.052235, lon=-118.243683, radius=1000)</code></pre>
<h2>πΌ <strong>Visualizing the Data</strong></h2>
<p>You can easily visualize the data fetched using <code class="highlight">hvplot</code>:</p>
<pre><code>import hvplot.xarray
ds.hvplot.image(title=f"Captured on {ds.attrs['metadata']['date']['value']}")</code></pre>
<h2>π¦ <strong>Dependencies</strong></h2>
<p>MapMiner relies on several Python libraries:</p>
<ul>
<li><strong class="important">Selenium:</strong> For automated browser control.</li>
<li><strong class="important">Dask:</strong> For distributed computing and handling large data.</li>
<li><strong class="important">Numba:</strong> For accelerating numerical operations.</li>
<li><strong class="important">Xarray:</strong> For handling multi-dimensional array data.</li>
<li><strong class="important">EasyOCR:</strong> For extracting text from images.</li>
<li><strong class="important">HvPlot:</strong> For visualizing xarray data.</li>
</ul>
<h2>π <strong>Contributing</strong></h2>
<p>Contributions are welcome! Fork the repository and submit pull requests. Include tests for any new features or bug fixes.</p>
</body>
</html>
Raw data
{
"_id": null,
"home_page": "https://github.com/gajeshladhar/mapminer",
"name": "mapminer",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "geospatial, GIS, Earth observation, satellite imagery, data processing, remote sensing, machine learning, map tiles, metadata extraction, planetary datasets, xarray, spatial analysis",
"author": "Gajesh Ladhar",
"author_email": "gajeshladhar@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c1/0a/123d152a37f79deb034a483bd1d9f520262b14cc46c796702095818b3895/mapminer-0.1.5.tar.gz",
"platform": null,
"description": "<!DOCTYPE html>\n<html lang=\"en\">\n<head>\n <meta charset=\"UTF-8\">\n <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\n</head>\n<body>\n <h1>\ud83c\udf0d <strong>MapMiner</strong> </h1>\n <p>\n <a href=\"https://colab.research.google.com/drive/1steVa5hY0SqUabvFLb0J4ypRWgSs7io9?usp=sharing\" target=\"_blank\">\n <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open in Colab\"/>\n</a>\n <img src=\"https://img.shields.io/badge/Python-3.x-blue.svg?style=flat-square&logo=python\" alt=\"Python\">\n <img src=\"https://img.shields.io/badge/Xarray-0.18+-orange.svg?style=flat-square&logo=xarray\" alt=\"Xarray\">\n <img src=\"https://img.shields.io/badge/Dask-Powered-yellow.svg?style=flat-square&logo=dask\" alt=\"Dask\">\n <img src=\"https://img.shields.io/badge/Numba-Accelerated-green.svg?style=flat-square&logo=numba\" alt=\"Numba\">\n <img src=\"https://img.shields.io/badge/Selenium-Automated-informational.svg?style=flat-square&logo=selenium\" alt=\"Selenium\">\n </p>\n <p><strong>MapMiner</strong> is a geospatial tool designed to efficiently download and process geospatial data and metadata from various sources. It leverages powerful Python libraries like <strong>Selenium</strong>, <strong>Dask</strong>, <strong>Numba</strong>, and <strong>Xarray</strong> to provide high-performance data retrieval and processing capabilities for geospatial analysis and visualization.</p><br>\n <h2>\ud83d\ude80 <strong>Key Features</strong></h2>\n <ul>\n <li><strong>\ud83c\udf10 Selenium:</strong> Automated web interactions for metadata extraction.</li>\n <li><strong>\u2699\ufe0f Dask:</strong> Distributed computing to manage large datasets.</li>\n <li><strong>\ud83d\ude80 Numba:</strong> JIT compilation for accelerating numerical computations.</li>\n <li><strong>\ud83d\udcca Xarray:</strong> Multi-dimensional array data handling for seamless integration.</li>\n </ul><br><h2>\ud83d\udcda <strong>Supported Datasets</strong></h2>\n<p>MapMiner supports a variety of geospatial datasets across multiple categories:</p>\n<div>\n\n\n| Category | Datasets |\n|-------------------------------------|---------------------------------------------------------------------------|\n| \ud83c\udf0d **Satellite** | `Sentinel-2`, `Sentinel-1`, `MODIS`, `Landsat` |\n| \ud83d\ude81 **Aerial** | `NAIP` |\n| \ud83d\uddfa\ufe0f **Basemap** | `Google`, `ESRI` |\n| \ud83d\udccd **Vectors** | `Google Building Footprint`, `OSM` |\n| \ud83c\udfd4\ufe0f **DEM (Digital Elevation Model)** | `Copernicus DEM 30m`, `ALOS DEM` |\n| \ud83c\udf0d **LULC (Land Use Land Cover)** | `ESRI LULC` |\n| \ud83c\udf3e **Crop Layer** | `CDL Crop Mask` |\n| \ud83d\udd52 **Real-Time** | `Google Maps Real-Time Traffic` |\n\n\n\n<h2>\ud83d\udee0 <strong>Installation</strong></h2>\n<p>Ensure you have the necessary dependencies installed:</p>\n<pre><code class=\"highlight\">pip3 install mapminer</code></pre>\n <h2>\ud83d\udcdd <strong>Usage</strong></h2>\n <p>MapMiner provides multiple classes to fetch and process different types of geospatial data:</p>\n <h3><strong>1\ufe0f\u20e3 GoogleBaseMapMiner</strong></h3>\n <pre><code>from mapminer.miner import GoogleBaseMapMiner\nminer = GoogleBaseMapMiner()\nds = miner.fetch(lat=40.748817, lon=-73.985428, radius=500)</code></pre>\n <h3><strong>2\ufe0f\u20e3 CDLMiner</strong></h3>\n <pre><code>from mapminer.miner import CDLMiner\nminer = CDLMiner()\nds = miner.fetch(lon=-95.665, lat=39.8283, radius=10000, daterange=\"2024-01-01/2024-01-10\")</code></pre>\n <h3><strong>3\ufe0f\u20e3 GoogleBuildingMiner</strong></h3>\n <pre><code>from mapminer.miner import GoogleBuildingMiner\nminer = GoogleBuildingMiner()\nds = miner.fetch(lat=34.052235, lon=-118.243683, radius=1000)</code></pre>\n <h2>\ud83d\uddbc <strong>Visualizing the Data</strong></h2>\n <p>You can easily visualize the data fetched using <code class=\"highlight\">hvplot</code>:</p>\n <pre><code>import hvplot.xarray\nds.hvplot.image(title=f\"Captured on {ds.attrs['metadata']['date']['value']}\")</code></pre>\n <h2>\ud83d\udce6 <strong>Dependencies</strong></h2>\n <p>MapMiner relies on several Python libraries:</p>\n <ul>\n <li><strong class=\"important\">Selenium:</strong> For automated browser control.</li>\n <li><strong class=\"important\">Dask:</strong> For distributed computing and handling large data.</li>\n <li><strong class=\"important\">Numba:</strong> For accelerating numerical operations.</li>\n <li><strong class=\"important\">Xarray:</strong> For handling multi-dimensional array data.</li>\n <li><strong class=\"important\">EasyOCR:</strong> For extracting text from images.</li>\n <li><strong class=\"important\">HvPlot:</strong> For visualizing xarray data.</li>\n </ul>\n <h2>\ud83d\udee0 <strong>Contributing</strong></h2>\n <p>Contributions are welcome! Fork the repository and submit pull requests. Include tests for any new features or bug fixes.</p>\n</body>\n</html>\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "An advanced geospatial data extraction and processing toolkit for Earth observation datasets.",
"version": "0.1.5",
"project_urls": {
"Documentation": "https://github.com/gajeshladhar/mapminer#readme",
"Homepage": "https://github.com/gajeshladhar/mapminer",
"Source": "https://github.com/gajeshladhar/mapminer",
"Tracker": "https://github.com/gajeshladhar/mapminer/issues"
},
"split_keywords": [
"geospatial",
" gis",
" earth observation",
" satellite imagery",
" data processing",
" remote sensing",
" machine learning",
" map tiles",
" metadata extraction",
" planetary datasets",
" xarray",
" spatial analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c524e87fdee687000a3054f00c82a84a9bcee597e5c7319109e01a941b927433",
"md5": "c1981e38ead9a127e914d38012cab257",
"sha256": "50fdf0ecb29f12ea791ae0bb1ade7707111437692a1c77c242d29c1a91ebe57a"
},
"downloads": -1,
"filename": "mapminer-0.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c1981e38ead9a127e914d38012cab257",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 39880,
"upload_time": "2024-11-25T06:31:53",
"upload_time_iso_8601": "2024-11-25T06:31:53.176694Z",
"url": "https://files.pythonhosted.org/packages/c5/24/e87fdee687000a3054f00c82a84a9bcee597e5c7319109e01a941b927433/mapminer-0.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c10a123d152a37f79deb034a483bd1d9f520262b14cc46c796702095818b3895",
"md5": "dd3c80a16e7503977446ac969525c5e1",
"sha256": "c41756dbc9ae016800913c381c2e3f6caa71a971289cf3f674142c6dcbab0f8a"
},
"downloads": -1,
"filename": "mapminer-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "dd3c80a16e7503977446ac969525c5e1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 96864,
"upload_time": "2024-11-25T06:31:56",
"upload_time_iso_8601": "2024-11-25T06:31:56.515997Z",
"url": "https://files.pythonhosted.org/packages/c1/0a/123d152a37f79deb034a483bd1d9f520262b14cc46c796702095818b3895/mapminer-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-25 06:31:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gajeshladhar",
"github_project": "mapminer",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "requests",
"specs": [
[
"==",
"2.32.3"
]
]
},
{
"name": "dask",
"specs": [
[
"==",
"2023.6.0"
]
]
},
{
"name": "easyocr",
"specs": [
[
"==",
"1.7.1"
]
]
},
{
"name": "mercantile",
"specs": [
[
"==",
"1.2.1"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.24.0"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.2"
]
]
},
{
"name": "Pillow",
"specs": [
[
"==",
"11.0.0"
]
]
},
{
"name": "rasterio",
"specs": [
[
"==",
"1.3.9"
]
]
},
{
"name": "Requests",
"specs": [
[
"==",
"2.32.3"
]
]
},
{
"name": "selenium",
"specs": [
[
"==",
"4.23.1"
]
]
},
{
"name": "undetected_chromedriver",
"specs": [
[
"==",
"3.5.5"
]
]
},
{
"name": "Shapely",
"specs": [
[
"==",
"2.0.6"
]
]
},
{
"name": "xarray",
"specs": [
[
"==",
"2024.2.0"
]
]
},
{
"name": "hvplot",
"specs": [
[
"==",
"0.9.1"
]
]
},
{
"name": "cryptography",
"specs": [
[
"==",
"41.0.3"
]
]
},
{
"name": "odc-stac",
"specs": [
[
"==",
"0.3.9"
]
]
},
{
"name": "pystac_client",
"specs": [
[
"==",
"0.7.2"
]
]
},
{
"name": "planetary_computer",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "paddlepaddle",
"specs": [
[
"==",
"2.6.1"
]
]
},
{
"name": "paddleocr",
"specs": [
[
"==",
"2.8.1"
]
]
},
{
"name": "rioxarray",
"specs": [
[
"==",
"0.15.3"
]
]
},
{
"name": "xee",
"specs": [
[
"==",
"0.0.9"
]
]
},
{
"name": "ipython",
"specs": [
[
"==",
"8.12.3"
]
]
},
{
"name": "geopandas",
"specs": [
[
"==",
"0.14.4"
]
]
},
{
"name": "geoviews",
"specs": [
[
"==",
"1.13.0"
]
]
},
{
"name": "fsspec",
"specs": [
[
"==",
"2024.3.1"
]
]
},
{
"name": "duckdb",
"specs": [
[
"==",
"1.1.3"
]
]
},
{
"name": "s3fs",
"specs": []
}
],
"lcname": "mapminer"
}