matcalc


Namematcalc JSON
Version 0.0.4 PyPI version JSON
download
home_page
SummaryCalculators for materials properties from the potential energy surface.
upload_time2024-01-01 18:51:11
maintainer
docs_urlNone
author
requires_python>=3.9
license
keywords ai deep learning force field graph interatomic potential machine learning materials property prediction science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
  <img src="https://github.com/materialsvirtuallab/matcalc/assets/30958850/89486f2f-73fb-40fb-803a-dfafe510eb6d" width="100" alt="MatCalc logo" style="vertical-align: middle;" /><br>
  MatCalc
</h1>

<h4 align="center">

[![GitHub license](https://img.shields.io/github/license/materialsvirtuallab/matcalc)](https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE)
[![Linting](https://github.com/materialsvirtuallab/matcalc/workflows/Linting/badge.svg)](https://github.com/materialsvirtuallab/matcalc/workflows/Linting/badge.svg)
[![Testing](https://github.com/materialsvirtuallab/matcalc/workflows/Testing/badge.svg)](https://github.com/materialsvirtuallab/matcalc/workflows/Testing/badge.svg)
[![codecov](https://codecov.io/gh/materialsvirtuallab/matcalc/branch/main/graph/badge.svg?token=OR7Z9WWRRC)](https://codecov.io/gh/materialsvirtuallab/matcalc)
[![Requires Python 3.8+](https://img.shields.io/badge/Python-3.8+-blue.svg?logo=python&logoColor=white)](https://python.org/downloads)
[![PyPI](https://img.shields.io/pypi/v/matcalc?logo=pypi&logoColor=white)](https://pypi.org/project/matcalc?logo=pypi&logoColor=white)

</h4>

## Docs

[materialsvirtuallab.github.io/matcalc](https://materialsvirtuallab.github.io/matcalc)

## Introduction

MatCalc is a Python library for calculating material properties from the potential energy surface (PES). The
PES can come from DFT or, more commonly, from machine learning interatomic potentials (MLIPs).

Calculating material properties often requires involved setups of various simulation codes. The
goal of MatCalc is to provide a simplified, consistent interface to access these properties with any
parameterization of the PES.

## Outline

The main base class in MatCalc is `PropCalc` (property calculator). [All `PropCalc` subclasses](https://github.com/search?q=repo%3Amaterialsvirtuallab%2Fmatcalc%20%22(PropCalc)%22) should implement a
`calc(pymatgen.Structure) -> dict` method that returns a dictionary of properties.

In general, `PropCalc` should be initialized with an ML model or ASE calculator, which is then used by either ASE,
LAMMPS or some other simulation code to perform calculations of properties.

## Cite `matcalc`

If you use `matcalc` in your research, see [`citation.cff`](citation.cff) or the GitHub sidebar for a BibTeX and APA citation.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "matcalc",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "AI,deep learning,force field,graph,interatomic potential,machine learning,materials,property prediction,science",
    "author": "",
    "author_email": "Eliott Liu <elliottliu17@gmail.com>, Janosh Riebesell <janosh@lbl.gov>, Ji Qi <j1qi@ucsd.edu>, Shyue Ping Ong <ongsp@ucsd.edu>, Tsz Wai Ko <t1ko@ucsd.edu>",
    "download_url": "https://files.pythonhosted.org/packages/81/ee/94362de752f9991f29b8e20b7c75964d2f282272ce5a6a02e6b7fbc42262/matcalc-0.0.4.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n  <img src=\"https://github.com/materialsvirtuallab/matcalc/assets/30958850/89486f2f-73fb-40fb-803a-dfafe510eb6d\" width=\"100\" alt=\"MatCalc logo\" style=\"vertical-align: middle;\" /><br>\n  MatCalc\n</h1>\n\n<h4 align=\"center\">\n\n[![GitHub license](https://img.shields.io/github/license/materialsvirtuallab/matcalc)](https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE)\n[![Linting](https://github.com/materialsvirtuallab/matcalc/workflows/Linting/badge.svg)](https://github.com/materialsvirtuallab/matcalc/workflows/Linting/badge.svg)\n[![Testing](https://github.com/materialsvirtuallab/matcalc/workflows/Testing/badge.svg)](https://github.com/materialsvirtuallab/matcalc/workflows/Testing/badge.svg)\n[![codecov](https://codecov.io/gh/materialsvirtuallab/matcalc/branch/main/graph/badge.svg?token=OR7Z9WWRRC)](https://codecov.io/gh/materialsvirtuallab/matcalc)\n[![Requires Python 3.8+](https://img.shields.io/badge/Python-3.8+-blue.svg?logo=python&logoColor=white)](https://python.org/downloads)\n[![PyPI](https://img.shields.io/pypi/v/matcalc?logo=pypi&logoColor=white)](https://pypi.org/project/matcalc?logo=pypi&logoColor=white)\n\n</h4>\n\n## Docs\n\n[materialsvirtuallab.github.io/matcalc](https://materialsvirtuallab.github.io/matcalc)\n\n## Introduction\n\nMatCalc is a Python library for calculating material properties from the potential energy surface (PES). The\nPES can come from DFT or, more commonly, from machine learning interatomic potentials (MLIPs).\n\nCalculating material properties often requires involved setups of various simulation codes. The\ngoal of MatCalc is to provide a simplified, consistent interface to access these properties with any\nparameterization of the PES.\n\n## Outline\n\nThe main base class in MatCalc is `PropCalc` (property calculator). [All `PropCalc` subclasses](https://github.com/search?q=repo%3Amaterialsvirtuallab%2Fmatcalc%20%22(PropCalc)%22) should implement a\n`calc(pymatgen.Structure) -> dict` method that returns a dictionary of properties.\n\nIn general, `PropCalc` should be initialized with an ML model or ASE calculator, which is then used by either ASE,\nLAMMPS or some other simulation code to perform calculations of properties.\n\n## Cite `matcalc`\n\nIf you use `matcalc` in your research, see [`citation.cff`](citation.cff) or the GitHub sidebar for a BibTeX and APA citation.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Calculators for materials properties from the potential energy surface.",
    "version": "0.0.4",
    "project_urls": null,
    "split_keywords": [
        "ai",
        "deep learning",
        "force field",
        "graph",
        "interatomic potential",
        "machine learning",
        "materials",
        "property prediction",
        "science"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5b42d2f1120c32fd38293cc971bec2e616af0736995554f5a581cbf166e30b59",
                "md5": "64dcc6ec815b9595f4bb998746434149",
                "sha256": "9c4d2d23e088c416fe2814dc64ec615e86ad0baafb05f26e503bb79420621718"
            },
            "downloads": -1,
            "filename": "matcalc-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "64dcc6ec815b9595f4bb998746434149",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 14300,
            "upload_time": "2024-01-01T18:51:10",
            "upload_time_iso_8601": "2024-01-01T18:51:10.078418Z",
            "url": "https://files.pythonhosted.org/packages/5b/42/d2f1120c32fd38293cc971bec2e616af0736995554f5a581cbf166e30b59/matcalc-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81ee94362de752f9991f29b8e20b7c75964d2f282272ce5a6a02e6b7fbc42262",
                "md5": "344cb5b7365cf3df746a8e12e4f2e547",
                "sha256": "581961a237d23fd7c8cef6478460e405c2cef45a3c34a48f22c8eae1c1c4ec90"
            },
            "downloads": -1,
            "filename": "matcalc-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "344cb5b7365cf3df746a8e12e4f2e547",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 15997,
            "upload_time": "2024-01-01T18:51:11",
            "upload_time_iso_8601": "2024-01-01T18:51:11.617100Z",
            "url": "https://files.pythonhosted.org/packages/81/ee/94362de752f9991f29b8e20b7c75964d2f282272ce5a6a02e6b7fbc42262/matcalc-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-01 18:51:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "matcalc"
}
        
Elapsed time: 0.82375s