===============================
MatrixProfile Documentation
===============================
.. image:: https://img.shields.io/pypi/v/matrixprofile.svg
:target: https://pypi.org/project/matrixprofile/
:alt: PyPI Version
.. image:: https://pepy.tech/badge/matrixprofile
:target: https://pepy.tech/project/matrixprofile
:alt: PyPI Downloads
.. image:: https://codecov.io/gh/matrix-profile-foundation/matrixprofile/branch/master/graph/badge.svg
:target: https://codecov.io/gh/matrix-profile-foundation/matrixprofile
:alt: Code Coverage
.. image:: https://api.travis-ci.com/matrix-profile-foundation/matrixprofile.svg?branch=master
:target: https://travis-ci.com/matrix-profile-foundation/matrixprofile
:alt: Build Status
.. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg
:target: https://opensource.org/licenses/Apache-2.0
:alt: License
.. image:: https://img.shields.io/twitter/follow/matrixprofile.svg?style=social
:target: https://twitter.com/matrixprofile
:alt: Twitter
.. image:: https://img.shields.io/discord/589321741277462559?logo=discord
:target: https://discordapp.com/invite/sBhDNXT
:alt: Discord
.. image:: https://joss.theoj.org/papers/10.21105/joss.02179/status.svg
:target: https://doi.org/10.21105/joss.02179
:alt: JOSSDOI
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3789780.svg
:target: https://doi.org/10.5281/zenodo.3789780
:alt: ZenodoDOI
|
.. image:: https://matrixprofile.org/static/img/mpf-logo.png
:target: https://matrixprofile.org
:height: 300px
:scale: 50%
:alt: MPF Logo
MatrixProfile
----------------
MatrixProfile is a Python 3 library, brought to you by the `Matrix Profile Foundation <https://matrixprofile.org>`_, for mining time series data. The Matrix Profile is a novel data structure with corresponding algorithms (stomp, regimes, motifs, etc.) developed by the `Keogh <https://www.cs.ucr.edu/~eamonn/MatrixProfile.html>`_ and `Mueen <https://www.cs.unm.edu/~mueen/>`_ research groups at UC-Riverside and the University of New Mexico. The goal of this library is to make these algorithms accessible to both the novice and expert through standardization of core concepts, a simplistic API, and sensible default parameter values.
In addition to this Python library, the Matrix Profile Foundation, provides implementations in other languages. These languages have a pretty consistent API allowing you to easily switch between them without a huge learning curve.
* `tsmp <https://github.com/matrix-profile-foundation/tsmp>`_ - an R implementation
* `go-matrixprofile <https://github.com/matrix-profile-foundation/go-matrixprofile>`_ - a Golang implementation
Python Support
----------------
Currently, we support the following versions of Python:
* 3.5
* 3.6
* 3.7
* 3.8
* 3.9
Python 2 is no longer supported. There are earlier versions of this library that support Python 2.
Installation
------------
The easiest way to install this library is using pip. If you would like to install it from source, please review the `installation documentation <http://matrixprofile.docs.matrixprofile.org/install.html>`_ for your platform.
.. code-block:: bash
pip install matrixprofile
Getting Started
---------------
This article provides introductory material on the Matrix Profile:
`Introduction to Matrix Profiles <https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90>`_
This article provides details about core concepts introduced in this library:
`How To Painlessly Analyze Your Time Series <https://towardsdatascience.com/how-to-painlessly-analyze-your-time-series-f52dab7ea80d>`_
Our documentation provides a `quick start guide <http://matrixprofile.docs.matrixprofile.org/Quickstart.html>`_, `examples <http://matrixprofile.docs.matrixprofile.org/examples.html>`_ and `api <http://matrixprofile.docs.matrixprofile.org/api.html>`_ documentation. It is the source of truth for getting up and running.
Algorithms
----------
For details about the algorithms implemented, including performance characteristics, please refer to the `documentation <http://matrixprofile.docs.matrixprofile.org/Algorithms.html>`_.
------------
Getting Help
------------
We provide a dedicated `Discord channel <https://discordapp.com/invite/sBhDNXT>`_ where practitioners can discuss applications and ask questions about the Matrix Profile Foundation libraries. If you rather not join Discord, then please open a `Github issue <https://github.com/matrix-profile-foundation/matrixprofile/issues>`_.
------------
Contributing
------------
Please review the `contributing guidelines <http://matrixprofile.docs.matrixprofile.org/contributing.html>`_ located in our documentation.
---------------
Code of Conduct
---------------
Please review our `Code of Conduct documentation <http://matrixprofile.docs.matrixprofile.org/code_of_conduct.html>`_.
---------
Citations
---------
All proper acknowledgements for works of others may be found in our `citation documentation <http://matrixprofile.docs.matrixprofile.org/citations.html>`_.
------
Citing
------
Please cite this work using the `Journal of Open Source Software article <https://joss.theoj.org/papers/10.21105/joss.02179>`_.
Van Benschoten et al., (2020). MPA: a novel cross-language API for time series analysis. Journal of Open Source Software, 5(49), 2179, https://doi.org/10.21105/joss.02179
.. code:: bibtex
@article{Van Benschoten2020,
doi = {10.21105/joss.02179},
url = {https://doi.org/10.21105/joss.02179},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {49},
pages = {2179},
author = {Andrew Van Benschoten and Austin Ouyang and Francisco Bischoff and Tyler Marrs},
title = {MPA: a novel cross-language API for time series analysis},
journal = {Journal of Open Source Software}
}
Raw data
{
"_id": null,
"home_page": "https://github.com/matrix-profile-foundation/matrixprofile",
"name": "matrixprofile",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "matrix profile time series discord motif analysis data science anomaly pattern",
"author": "Matrix Profile Foundation",
"author_email": "tylerwmarrs@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7f/0f/5c43a6120f7c5897a0ea575348c0141ed17236e77e10155924fc8d109513/matrixprofile-1.1.10.tar.gz",
"platform": "",
"description": "===============================\n MatrixProfile Documentation\n===============================\n\n.. image:: https://img.shields.io/pypi/v/matrixprofile.svg\n :target: https://pypi.org/project/matrixprofile/\n :alt: PyPI Version\n.. image:: https://pepy.tech/badge/matrixprofile\n :target: https://pepy.tech/project/matrixprofile\n :alt: PyPI Downloads\n.. image:: https://codecov.io/gh/matrix-profile-foundation/matrixprofile/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/matrix-profile-foundation/matrixprofile\n :alt: Code Coverage\n.. image:: https://api.travis-ci.com/matrix-profile-foundation/matrixprofile.svg?branch=master\n :target: https://travis-ci.com/matrix-profile-foundation/matrixprofile\n :alt: Build Status\n.. image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg\n :target: https://opensource.org/licenses/Apache-2.0\n :alt: License\n.. image:: https://img.shields.io/twitter/follow/matrixprofile.svg?style=social\n :target: https://twitter.com/matrixprofile\n :alt: Twitter\n.. image:: https://img.shields.io/discord/589321741277462559?logo=discord\n :target: https://discordapp.com/invite/sBhDNXT\n :alt: Discord\n.. image:: https://joss.theoj.org/papers/10.21105/joss.02179/status.svg\n :target: https://doi.org/10.21105/joss.02179\n :alt: JOSSDOI\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3789780.svg\n :target: https://doi.org/10.5281/zenodo.3789780\n :alt: ZenodoDOI\n\n|\n\n.. image:: https://matrixprofile.org/static/img/mpf-logo.png\n :target: https://matrixprofile.org\n :height: 300px\n :scale: 50%\n :alt: MPF Logo\n\nMatrixProfile\n----------------\nMatrixProfile is a Python 3 library, brought to you by the `Matrix Profile Foundation <https://matrixprofile.org>`_, for mining time series data. The Matrix Profile is a novel data structure with corresponding algorithms (stomp, regimes, motifs, etc.) developed by the `Keogh <https://www.cs.ucr.edu/~eamonn/MatrixProfile.html>`_ and `Mueen <https://www.cs.unm.edu/~mueen/>`_ research groups at UC-Riverside and the University of New Mexico. The goal of this library is to make these algorithms accessible to both the novice and expert through standardization of core concepts, a simplistic API, and sensible default parameter values.\n\nIn addition to this Python library, the Matrix Profile Foundation, provides implementations in other languages. These languages have a pretty consistent API allowing you to easily switch between them without a huge learning curve.\n\n* `tsmp <https://github.com/matrix-profile-foundation/tsmp>`_ - an R implementation\n* `go-matrixprofile <https://github.com/matrix-profile-foundation/go-matrixprofile>`_ - a Golang implementation\n\nPython Support\n----------------\nCurrently, we support the following versions of Python:\n\n* 3.5\n* 3.6\n* 3.7\n* 3.8\n* 3.9\n\nPython 2 is no longer supported. There are earlier versions of this library that support Python 2.\n\nInstallation\n------------\nThe easiest way to install this library is using pip. If you would like to install it from source, please review the `installation documentation <http://matrixprofile.docs.matrixprofile.org/install.html>`_ for your platform.\n\n.. code-block:: bash\n\n pip install matrixprofile\n\nGetting Started\n---------------\nThis article provides introductory material on the Matrix Profile:\n`Introduction to Matrix Profiles <https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90>`_\n\n\nThis article provides details about core concepts introduced in this library:\n`How To Painlessly Analyze Your Time Series <https://towardsdatascience.com/how-to-painlessly-analyze-your-time-series-f52dab7ea80d>`_\n\nOur documentation provides a `quick start guide <http://matrixprofile.docs.matrixprofile.org/Quickstart.html>`_, `examples <http://matrixprofile.docs.matrixprofile.org/examples.html>`_ and `api <http://matrixprofile.docs.matrixprofile.org/api.html>`_ documentation. It is the source of truth for getting up and running.\n\nAlgorithms\n----------\nFor details about the algorithms implemented, including performance characteristics, please refer to the `documentation <http://matrixprofile.docs.matrixprofile.org/Algorithms.html>`_.\n\n------------\nGetting Help\n------------\nWe provide a dedicated `Discord channel <https://discordapp.com/invite/sBhDNXT>`_ where practitioners can discuss applications and ask questions about the Matrix Profile Foundation libraries. If you rather not join Discord, then please open a `Github issue <https://github.com/matrix-profile-foundation/matrixprofile/issues>`_.\n\n------------\nContributing\n------------\nPlease review the `contributing guidelines <http://matrixprofile.docs.matrixprofile.org/contributing.html>`_ located in our documentation.\n\n---------------\nCode of Conduct\n---------------\nPlease review our `Code of Conduct documentation <http://matrixprofile.docs.matrixprofile.org/code_of_conduct.html>`_.\n\n---------\nCitations\n---------\nAll proper acknowledgements for works of others may be found in our `citation documentation <http://matrixprofile.docs.matrixprofile.org/citations.html>`_.\n\n------\nCiting\n------\nPlease cite this work using the `Journal of Open Source Software article <https://joss.theoj.org/papers/10.21105/joss.02179>`_.\n\n Van Benschoten et al., (2020). MPA: a novel cross-language API for time series analysis. Journal of Open Source Software, 5(49), 2179, https://doi.org/10.21105/joss.02179\n\n.. code:: bibtex\n\n @article{Van Benschoten2020,\n doi = {10.21105/joss.02179},\n url = {https://doi.org/10.21105/joss.02179},\n year = {2020},\n publisher = {The Open Journal},\n volume = {5},\n number = {49},\n pages = {2179},\n author = {Andrew Van Benschoten and Austin Ouyang and Francisco Bischoff and Tyler Marrs},\n title = {MPA: a novel cross-language API for time series analysis},\n journal = {Journal of Open Source Software}\n }\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "An open source time series data mining library based on Matrix Profile algorithms.",
"version": "1.1.10",
"split_keywords": [
"matrix",
"profile",
"time",
"series",
"discord",
"motif",
"analysis",
"data",
"science",
"anomaly",
"pattern"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "f620a59fec667b756221380e7d4b8c0d",
"sha256": "26a658e06844e16ceb028005bfa59f8ddd2f9571eefc8aa11179fb01130a5eec"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp35-cp35m-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "f620a59fec667b756221380e7d4b8c0d",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": null,
"size": 711076,
"upload_time": "2021-01-16T14:06:14",
"upload_time_iso_8601": "2021-01-16T14:06:14.868661Z",
"url": "https://files.pythonhosted.org/packages/1e/3e/e50db69778f05e860989ab80660916709df0979a1d42518eff272d99cbf0/matrixprofile-1.1.10-cp35-cp35m-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "e125a705212815c2ded96fe7ab1651c6",
"sha256": "601007648a16523a8b5b353e311c26b4ab4c2aac4ff450c14f5000255c281cc3"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp35-cp35m-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "e125a705212815c2ded96fe7ab1651c6",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": null,
"size": 1127170,
"upload_time": "2021-01-16T12:57:23",
"upload_time_iso_8601": "2021-01-16T12:57:23.920121Z",
"url": "https://files.pythonhosted.org/packages/a2/e3/e1f150d31a68e9e0e611edae6f02b013df25e97c03e63de7df5f87778dc1/matrixprofile-1.1.10-cp35-cp35m-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "3022d84c4df321b0bcadbf3e6caa7500",
"sha256": "323169f76fd099f4c0ca449ed8dfc77a60e0d54b272bd66e66720697e7429151"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp35-cp35m-win_amd64.whl",
"has_sig": false,
"md5_digest": "3022d84c4df321b0bcadbf3e6caa7500",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": null,
"size": 519930,
"upload_time": "2021-01-16T13:18:24",
"upload_time_iso_8601": "2021-01-16T13:18:24.743286Z",
"url": "https://files.pythonhosted.org/packages/28/0b/75acbef7639a8b4f325e4e05aae60f97f2258411818aa755a5ac1f54a0a1/matrixprofile-1.1.10-cp35-cp35m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "f68a8c7c4a4e885f5cc0d825e6abd924",
"sha256": "89d12e95cb912f0ceab9d8fda621061aabc72db7a413c6225b2e8cde288ce961"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp36-cp36m-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "f68a8c7c4a4e885f5cc0d825e6abd924",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 701720,
"upload_time": "2021-01-16T14:06:16",
"upload_time_iso_8601": "2021-01-16T14:06:16.078513Z",
"url": "https://files.pythonhosted.org/packages/cb/47/d838cb169dc60970c600e8bd5695a92f191b021ae159df09e63be5a12e30/matrixprofile-1.1.10-cp36-cp36m-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "b935f38c24ba96b412a3a41676670051",
"sha256": "9965b7a4697556361776019ca6cce900e13b09c1c43c594791b34b90bffc563c"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp36-cp36m-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "b935f38c24ba96b412a3a41676670051",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 1124070,
"upload_time": "2021-01-16T12:57:25",
"upload_time_iso_8601": "2021-01-16T12:57:25.506533Z",
"url": "https://files.pythonhosted.org/packages/36/2f/29149ceb8392df26d4f9b2c3f8400ad66cba5786a542b61530572f6ef3cd/matrixprofile-1.1.10-cp36-cp36m-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "2055dfc8772369ef0c4dda75df865db6",
"sha256": "5449a58ac7d0596a8ebf7934051b2ca7deeab2cd0b67763f2a660df280f562c3"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp36-cp36m-win_amd64.whl",
"has_sig": false,
"md5_digest": "2055dfc8772369ef0c4dda75df865db6",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": null,
"size": 511140,
"upload_time": "2021-01-16T13:18:25",
"upload_time_iso_8601": "2021-01-16T13:18:25.808571Z",
"url": "https://files.pythonhosted.org/packages/bf/44/e8f8d2378f98c9b9a570c5246c26df43e41322fcc9a98d8c4b65e99ff072/matrixprofile-1.1.10-cp36-cp36m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "e4122f95c29f9771c6c778be474c0545",
"sha256": "a908b4196a63c1904fee3adcb24954c297b51014b3858a03cea7e3d6a439a6ee"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp37-cp37m-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "e4122f95c29f9771c6c778be474c0545",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 708100,
"upload_time": "2021-01-16T14:06:17",
"upload_time_iso_8601": "2021-01-16T14:06:17.257265Z",
"url": "https://files.pythonhosted.org/packages/17/57/780d19fb5e2b05c0103b673e66ac9ee4703cdcfe9aa91a5253fe29964a30/matrixprofile-1.1.10-cp37-cp37m-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "206187041f84de350578b54a82f33f08",
"sha256": "2a6ebbdd10b53b3f2b69c17f90cb4a57f296bed9ef19b42969b735867420c8fb"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp37-cp37m-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "206187041f84de350578b54a82f33f08",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 1138223,
"upload_time": "2021-01-16T12:57:26",
"upload_time_iso_8601": "2021-01-16T12:57:26.787049Z",
"url": "https://files.pythonhosted.org/packages/b1/c3/43d282f0e5299f977b62e53e4dde22ddb14c90877af5b62af225fa783d8e/matrixprofile-1.1.10-cp37-cp37m-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "27ab11ae6d1d84ff9948736b39736444",
"sha256": "af10023f71ed737b0994831c82f487716f858ea7af90e1b72d9bec8de1970788"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "27ab11ae6d1d84ff9948736b39736444",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 513808,
"upload_time": "2021-01-16T13:18:26",
"upload_time_iso_8601": "2021-01-16T13:18:26.759381Z",
"url": "https://files.pythonhosted.org/packages/52/56/bdddfa5717b46ab2ad473d444e94e06f477b00d28d10280446bdafc80263/matrixprofile-1.1.10-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "63c7dd438143328f3416bf9171cc0c8e",
"sha256": "1949916dd7f0d7c793fcecb24f307cf71dbe2451023a8feea98a57f7e555a4c0"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp38-cp38-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "63c7dd438143328f3416bf9171cc0c8e",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 710627,
"upload_time": "2021-01-16T14:06:18",
"upload_time_iso_8601": "2021-01-16T14:06:18.566293Z",
"url": "https://files.pythonhosted.org/packages/8e/4d/bb698393a8a306c2f8c91462f9a5b6e019c8fec80b6db7174e77a754824d/matrixprofile-1.1.10-cp38-cp38-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "18fb11b9f285bec14b6ee9fcd5cffd31",
"sha256": "a9a4135dbbacec44b2697cb8d02de0db5760a694946dc13d0a8c613084730767"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp38-cp38-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "18fb11b9f285bec14b6ee9fcd5cffd31",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 1226021,
"upload_time": "2021-01-16T12:57:28",
"upload_time_iso_8601": "2021-01-16T12:57:28.249790Z",
"url": "https://files.pythonhosted.org/packages/b7/b2/ad9aaa50bf487ac0e960f63b1140e2494fdedcd3b1cd3618490d03b0ff4b/matrixprofile-1.1.10-cp38-cp38-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "1b5261286693eda1df978d4a5c959263",
"sha256": "718b13d05397d2535b87510138e371508043a199bb2e3ac44d230cfc5e9d1b3b"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "1b5261286693eda1df978d4a5c959263",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": null,
"size": 515314,
"upload_time": "2021-01-16T13:18:27",
"upload_time_iso_8601": "2021-01-16T13:18:27.738843Z",
"url": "https://files.pythonhosted.org/packages/cc/b1/adca1af8c2376364240348a089a98a9a072b783d87a7de36e887cdfd82e9/matrixprofile-1.1.10-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "5e2db78faa210eae7251aa0cb4b57a57",
"sha256": "28d12668e6028a169a2608a0180cac305daddbbb180eb429a9db5970f4b146f3"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp39-cp39-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "5e2db78faa210eae7251aa0cb4b57a57",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 709804,
"upload_time": "2021-01-16T14:06:20",
"upload_time_iso_8601": "2021-01-16T14:06:20.175057Z",
"url": "https://files.pythonhosted.org/packages/d6/ec/25873ddf9a80459c51c9eddfa58331b43a1c3373ad21617aead75d0cfd81/matrixprofile-1.1.10-cp39-cp39-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "fac68afc1f11bfb645c6ed8f272b128e",
"sha256": "05def32cb0caa4b756c51f83f58e06d340d2d67f70cedd766fcca6472f135e17"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp39-cp39-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "fac68afc1f11bfb645c6ed8f272b128e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 1193062,
"upload_time": "2021-01-16T12:57:29",
"upload_time_iso_8601": "2021-01-16T12:57:29.358284Z",
"url": "https://files.pythonhosted.org/packages/32/fd/0429399fac916b1b9e8f6ff309b5ab0a9b6f7f28d0acdb6f45f75cf8941e/matrixprofile-1.1.10-cp39-cp39-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "0089655d182ad879cbd069f6a036e51f",
"sha256": "2ae8feabfaa5c46306501ed0e3209385b9e837385814063a67ceae317ad1976b"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "0089655d182ad879cbd069f6a036e51f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 515123,
"upload_time": "2021-01-16T13:18:28",
"upload_time_iso_8601": "2021-01-16T13:18:28.780341Z",
"url": "https://files.pythonhosted.org/packages/b1/31/2287dae6c9e50314bf6153eb46135f88a80fa119a69905e171d145cc7ea7/matrixprofile-1.1.10-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "dcf3e9edff5d151f30b07875c4b1148d",
"sha256": "d6d7dd13c2d1a1a725ce09c621960ee309ebac0b7b3cab680c4d91c683fff1b5"
},
"downloads": -1,
"filename": "matrixprofile-1.1.10.tar.gz",
"has_sig": false,
"md5_digest": "dcf3e9edff5d151f30b07875c4b1148d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 331630,
"upload_time": "2021-01-16T12:57:34",
"upload_time_iso_8601": "2021-01-16T12:57:34.902791Z",
"url": "https://files.pythonhosted.org/packages/7f/0f/5c43a6120f7c5897a0ea575348c0141ed17236e77e10155924fc8d109513/matrixprofile-1.1.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2021-01-16 12:57:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "matrix-profile-foundation",
"github_project": "matrixprofile",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": [
[
">=",
"1.16.2"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.0.3"
]
]
},
{
"name": "pytest",
"specs": [
[
">=",
"3.5.1"
]
]
},
{
"name": "setuptools",
"specs": [
[
">=",
"39.1.0"
]
]
},
{
"name": "cython",
"specs": [
[
">=",
"0.x"
]
]
},
{
"name": "protobuf",
"specs": [
[
"<",
"4.0.0"
],
[
">=",
"3.11.2"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.3.2"
],
[
"<",
"2.0.0"
]
]
},
{
"name": "sphinx",
"specs": []
},
{
"name": "nbsphinx",
"specs": []
},
{
"name": "sphinx_rtd_theme",
"specs": []
},
{
"name": "wheel",
"specs": []
}
],
"lcname": "matrixprofile"
}