mcp-recommender


Namemcp-recommender JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA smart MCP server to recommend other MCPs based on your needs.
upload_time2025-08-31 01:58:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT
keywords ai mcp model-context-protocol recommendations server
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MCP Recommender

A smart MCP (Model Context Protocol) server that provides intelligent recommendations for other MCP servers based on your development needs.

## Features

- 🔍 **Smart Search**: Find MCP servers using natural language queries
- 📊 **Rich Database**: Access to 874+ curated MCP servers across 36+ categories
- 🎯 **Intelligent Matching**: Advanced scoring algorithm for relevant recommendations
- 🏷️ **Category Filtering**: Filter by specific categories and programming languages
- 🚀 **Easy Integration**: Simple setup with uv package manager
- 🔧 **Multiple Interfaces**: Support for both CLI and MCP client integration

## Installation

### Using uv (Recommended)

```bash
# Clone the repository
git clone https://github.com/mcp-team/mcp-recommender.git
cd mcp-recommender

# Install with uv
uv sync

# Test the installation
uv run -m mcp_recommender --test
```

### Using pip

```bash
pip install mcp-recommender
```

## Usage

### Command Line Interface

```bash
# Test mode - verify installation and see sample recommendations
uv run -m mcp_recommender --test

# Server mode - start the MCP server
uv run -m mcp_recommender --server

# Debug mode - detailed diagnostic information
uv run -m mcp_recommender --debug
```

### MCP Client Integration

Add to your MCP client configuration:

```json
{
  "mcpServers": {
    "mcp-recommender": {
      "isActive": true,
      "name": "mcp-recommender",
      "type": "stdio",
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/mcp-recommender",
        "run",
        "-m",
        "mcp_recommender"
      ]
    }
  }
}
```

### Available Tools

Once integrated, you can use these tools in your MCP client:

#### `recommend_mcp`
Get intelligent MCP server recommendations based on your needs.

**Parameters:**
- `query` (string): Description of functionality you need
- `limit` (integer, optional): Maximum number of recommendations (default: 5)
- `category` (string, optional): Filter by specific category
- `language` (string, optional): Filter by programming language

**Example:**
```
recommend_mcp("database operations with SQLite", limit=3)
```

#### `list_categories`
List all available MCP categories with counts.

#### `get_functional_keywords`
Show functional keyword mappings for better search results.

## Categories

The recommender covers 36+ categories including:

- **Developer Tools** (120+ servers)
- **Databases** (79+ servers)
- **Search & Data Extraction** (69+ servers)
- **Cloud Platforms** (39+ servers)
- **Security** (39+ servers)
- **Communication** (36+ servers)
- **Browser Automation** (23+ servers)
- **Knowledge & Memory** (22+ servers)
- And many more...

## Development

### Setup Development Environment

```bash
# Clone and setup
git clone https://github.com/mcp-team/mcp-recommender.git
cd mcp-recommender

# Install development dependencies
uv sync --dev

# Run tests
uv run pytest

# Build package
uv build
```

### Project Structure

```
mcp-recommender/
├── mcp_recommender/           # Main package
│   ├── __init__.py
│   ├── __main__.py           # CLI entry point
│   ├── server.py             # MCP server implementation
│   └── data/                 # MCP database and keywords
│       ├── mcp_database.json
│       └── functional_keywords.json
├── tests/                    # Test suite
├── LICENSE                   # MIT License
├── README.md                 # This file
└── pyproject.toml           # Package configuration
```

## Contributing

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- Built with [FastMCP](https://github.com/jlowin/fastmcp) framework
- MCP database curated from the awesome MCP community
- Powered by the [Model Context Protocol](https://modelcontextprotocol.io/)

## Support

- 📖 [Documentation](https://github.com/mcp-team/mcp-recommender#readme)
- 🐛 [Issue Tracker](https://github.com/mcp-team/mcp-recommender/issues)
- 💬 [Discussions](https://github.com/mcp-team/mcp-recommender/discussions)

---

Made with ❤️ by the MCP community
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mcp-recommender",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "ai, mcp, model-context-protocol, recommendations, server",
    "author": null,
    "author_email": "CodeBuddy <codebuddy@tencent.com>",
    "download_url": null,
    "platform": null,
    "description": "# MCP Recommender\n\nA smart MCP (Model Context Protocol) server that provides intelligent recommendations for other MCP servers based on your development needs.\n\n## Features\n\n- \ud83d\udd0d **Smart Search**: Find MCP servers using natural language queries\n- \ud83d\udcca **Rich Database**: Access to 874+ curated MCP servers across 36+ categories\n- \ud83c\udfaf **Intelligent Matching**: Advanced scoring algorithm for relevant recommendations\n- \ud83c\udff7\ufe0f **Category Filtering**: Filter by specific categories and programming languages\n- \ud83d\ude80 **Easy Integration**: Simple setup with uv package manager\n- \ud83d\udd27 **Multiple Interfaces**: Support for both CLI and MCP client integration\n\n## Installation\n\n### Using uv (Recommended)\n\n```bash\n# Clone the repository\ngit clone https://github.com/mcp-team/mcp-recommender.git\ncd mcp-recommender\n\n# Install with uv\nuv sync\n\n# Test the installation\nuv run -m mcp_recommender --test\n```\n\n### Using pip\n\n```bash\npip install mcp-recommender\n```\n\n## Usage\n\n### Command Line Interface\n\n```bash\n# Test mode - verify installation and see sample recommendations\nuv run -m mcp_recommender --test\n\n# Server mode - start the MCP server\nuv run -m mcp_recommender --server\n\n# Debug mode - detailed diagnostic information\nuv run -m mcp_recommender --debug\n```\n\n### MCP Client Integration\n\nAdd to your MCP client configuration:\n\n```json\n{\n  \"mcpServers\": {\n    \"mcp-recommender\": {\n      \"isActive\": true,\n      \"name\": \"mcp-recommender\",\n      \"type\": \"stdio\",\n      \"command\": \"uv\",\n      \"args\": [\n        \"--directory\",\n        \"/path/to/mcp-recommender\",\n        \"run\",\n        \"-m\",\n        \"mcp_recommender\"\n      ]\n    }\n  }\n}\n```\n\n### Available Tools\n\nOnce integrated, you can use these tools in your MCP client:\n\n#### `recommend_mcp`\nGet intelligent MCP server recommendations based on your needs.\n\n**Parameters:**\n- `query` (string): Description of functionality you need\n- `limit` (integer, optional): Maximum number of recommendations (default: 5)\n- `category` (string, optional): Filter by specific category\n- `language` (string, optional): Filter by programming language\n\n**Example:**\n```\nrecommend_mcp(\"database operations with SQLite\", limit=3)\n```\n\n#### `list_categories`\nList all available MCP categories with counts.\n\n#### `get_functional_keywords`\nShow functional keyword mappings for better search results.\n\n## Categories\n\nThe recommender covers 36+ categories including:\n\n- **Developer Tools** (120+ servers)\n- **Databases** (79+ servers)\n- **Search & Data Extraction** (69+ servers)\n- **Cloud Platforms** (39+ servers)\n- **Security** (39+ servers)\n- **Communication** (36+ servers)\n- **Browser Automation** (23+ servers)\n- **Knowledge & Memory** (22+ servers)\n- And many more...\n\n## Development\n\n### Setup Development Environment\n\n```bash\n# Clone and setup\ngit clone https://github.com/mcp-team/mcp-recommender.git\ncd mcp-recommender\n\n# Install development dependencies\nuv sync --dev\n\n# Run tests\nuv run pytest\n\n# Build package\nuv build\n```\n\n### Project Structure\n\n```\nmcp-recommender/\n\u251c\u2500\u2500 mcp_recommender/           # Main package\n\u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u251c\u2500\u2500 __main__.py           # CLI entry point\n\u2502   \u251c\u2500\u2500 server.py             # MCP server implementation\n\u2502   \u2514\u2500\u2500 data/                 # MCP database and keywords\n\u2502       \u251c\u2500\u2500 mcp_database.json\n\u2502       \u2514\u2500\u2500 functional_keywords.json\n\u251c\u2500\u2500 tests/                    # Test suite\n\u251c\u2500\u2500 LICENSE                   # MIT License\n\u251c\u2500\u2500 README.md                 # This file\n\u2514\u2500\u2500 pyproject.toml           # Package configuration\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\n3. Commit your changes (`git commit -m 'Add amazing feature'`)\n4. Push to the branch (`git push origin feature/amazing-feature`)\n5. Open a Pull Request\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- Built with [FastMCP](https://github.com/jlowin/fastmcp) framework\n- MCP database curated from the awesome MCP community\n- Powered by the [Model Context Protocol](https://modelcontextprotocol.io/)\n\n## Support\n\n- \ud83d\udcd6 [Documentation](https://github.com/mcp-team/mcp-recommender#readme)\n- \ud83d\udc1b [Issue Tracker](https://github.com/mcp-team/mcp-recommender/issues)\n- \ud83d\udcac [Discussions](https://github.com/mcp-team/mcp-recommender/discussions)\n\n---\n\nMade with \u2764\ufe0f by the MCP community",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A smart MCP server to recommend other MCPs based on your needs.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/your-username/mcp-recommender"
    },
    "split_keywords": [
        "ai",
        " mcp",
        " model-context-protocol",
        " recommendations",
        " server"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "551ae9d2ca5b950e5cc7830634113345bfdaa55bbfba8d09d263bc4a8e6a2030",
                "md5": "7da0a94fe62b0b529d35514cd88435ac",
                "sha256": "5d2756c1b9e8e2e992c71fa5ae01e8f165da22db7a107af5870dad3383f419a2"
            },
            "downloads": -1,
            "filename": "mcp_recommender-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7da0a94fe62b0b529d35514cd88435ac",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 92277,
            "upload_time": "2025-08-31T01:58:30",
            "upload_time_iso_8601": "2025-08-31T01:58:30.271224Z",
            "url": "https://files.pythonhosted.org/packages/55/1a/e9d2ca5b950e5cc7830634113345bfdaa55bbfba8d09d263bc4a8e6a2030/mcp_recommender-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-31 01:58:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "your-username",
    "github_project": "mcp-recommender",
    "github_not_found": true,
    "lcname": "mcp-recommender"
}
        
Elapsed time: 1.91950s