metaperceptron


Namemetaperceptron JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://github.com/thieu1995/MetaPerceptron
SummaryMetaPerceptron: A Standardized Framework for Metaheuristic-Trained Multi-Layer Perceptron
upload_time2024-11-04 07:36:03
maintainerNone
docs_urlNone
authorThieu
requires_python>=3.8
licenseGPLv3
keywords multi-layer perceptron machine learning artificial intelligence deep learning neural networks single hidden layer network random projection flann feed-forward neural network artificial neural network classification regression supervised learning online learning generalization optimization algorithms kernel mlp cross-validationgenetic algorithm (ga) particle swarm optimization (pso) ant colony optimization (aco) differential evolution (de) simulated annealing grey wolf optimizer (gwo) whale optimization algorithm (woa) confusion matrix recall precision accuracy pearson correlation coefficient (pcc) spearman correlation coefficient (scc) global optimization convergence analysis search space exploration local search computational intelligence robust optimization metaheuristic metaheuristic algorithms nature-inspired computing nature-inspired algorithms swarm-based computation metaheuristic-based multi-layer perceptron metaheuristic-optimized mlp performance analysis intelligent optimization simulations
VCS
bugtrack_url
requirements numpy scipy scikit-learn pandas mealpy permetrics torch pytest pytest-cov flake8
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<p align="center">
<img style="width:100%;" src="https://thieu1995.github.io/post/2023-08/metaperceptron1.png" alt="MetaPerceptron"/>
</p>


---

[![GitHub release](https://img.shields.io/badge/release-2.0.0-yellow.svg)](https://github.com/thieu1995/MetaPerceptron/releases)
[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/metaperceptron) 
[![PyPI version](https://badge.fury.io/py/metaperceptron.svg)](https://badge.fury.io/py/metaperceptron)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/metaperceptron.svg)
![PyPI - Status](https://img.shields.io/pypi/status/metaperceptron.svg)
![PyPI - Downloads](https://img.shields.io/pypi/dm/metaperceptron.svg)
[![Downloads](https://pepy.tech/badge/metaperceptron)](https://pepy.tech/project/metaperceptron)
[![Tests & Publishes to PyPI](https://github.com/thieu1995/metaperceptron/actions/workflows/publish-package.yaml/badge.svg)](https://github.com/thieu1995/metaperceptron/actions/workflows/publish-package.yaml)
![GitHub Release Date](https://img.shields.io/github/release-date/thieu1995/metaperceptron.svg)
[![Documentation Status](https://readthedocs.org/projects/metaperceptron/badge/?version=latest)](https://metaperceptron.readthedocs.io/en/latest/?badge=latest)
[![Chat](https://img.shields.io/badge/Chat-on%20Telegram-blue)](https://t.me/+fRVCJGuGJg1mNDg1)
![GitHub contributors](https://img.shields.io/github/contributors/thieu1995/metaperceptron.svg)
[![GitTutorial](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)](https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)
[![DOI](https://zenodo.org/badge/676088001.svg)](https://zenodo.org/doi/10.5281/zenodo.10251021)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)


MetaPerceptron (Metaheuristic-optimized Multi-Layer Perceptron) is a Python library that implements variants and the 
traditional version of Multi-Layer Perceptron models. These include Metaheuristic-optimized MLP models (GA, PSO, WOA, TLO, DE, ...) 
and Gradient Descent-optimized MLP models (SGD, Adam, Adelta, Adagrad, ...). It provides a comprehensive list of 
optimizers for training MLP models and is also compatible with the Scikit-Learn library. With MetaPerceptron, 
you can perform searches and hyperparameter tuning using the features provided by the Scikit-Learn library.

* **Free software:** GNU General Public License (GPL) V3 license
* **Provided Estimator**: `MlpRegressor`, `MlpClassifier`, `MhaMlpRegressor`, `MhaMlpClassifier`
* **Provided Utility**: `MhaMlpTuner` and `MhaMlpComparator` 
* **Total Metaheuristic-trained MLP Regressor**: > 200 Models 
* **Total Metaheuristic-trained MLP Classifier**: > 200 Models
* **Total Gradient Descent-trained MLP Regressor**: 12 Models
* **Total Gradient Descent-trained MLP Classifier**: 12 Models
* **Supported performance metrics**: >= 67 (47 regressions and 20 classifications)
* **Documentation:** https://metaperceptron.readthedocs.io
* **Python versions:** >= 3.8.x
* **Dependencies:** numpy, scipy, scikit-learn, torch, mealpy, pandas, permetrics. 


# Citation Request 

If you want to understand how Metaheuristic is applied to Multi-Layer Perceptron, you need to read the paper 
titled **"Let a biogeography-based optimizer train your Multi-Layer Perceptron"**. 
The paper can be accessed at the following [link](https://doi.org/10.1016/j.ins.2014.01.038)


Please include these citations if you plan to use this library:

```code

@software{nguyen_van_thieu_2023_10251022,
  author       = {Nguyen Van Thieu},
  title        = {MetaPerceptron: A Standardized Framework for Metaheuristic-Trained Multi-Layer Perceptron},
  month        = dec,
  year         = 2023,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.10251021},
  url          = {https://github.com/thieu1995/MetaPerceptron}
}

@article{van2023mealpy,
  title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},
  author={Van Thieu, Nguyen and Mirjalili, Seyedali},
  journal={Journal of Systems Architecture},
  year={2023},
  publisher={Elsevier},
  doi={10.1016/j.sysarc.2023.102871}
}

@article{van2023groundwater,
  title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization},
  author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai},
  journal={Journal of Hydrology},
  volume={617},
  pages={129034},
  year={2023},
  publisher={Elsevier}
}

@article{thieu2019efficient,
  title={Efficient time-series forecasting using neural network and opposition-based coral reefs optimization},
  author={Thieu Nguyen, Tu Nguyen and Nguyen, Binh Minh and Nguyen, Giang},
  journal={International Journal of Computational Intelligence Systems},
  volume={12},
  number={2},
  pages={1144--1161},
  year={2019}
}

```

# Simple Tutorial

* Install the [current PyPI release](https://pypi.python.org/pypi/metaperceptron):
```sh
$ pip install metaperceptron==2.0.0
```

* Check the version:

```sh
$ python
>>> import metaperceptron
>>> metaperceptron.__version__
```

* Import all provided classes from MetaPerceptron

```python
from metaperceptron import DataTransformer, Data
from metaperceptron import MhaMlpRegressor, MhaMlpClassifier, MlpRegressor, MlpClassifier
from metaperceptron import MhaMlpTuner, MhaMlpComparator
```

* In this tutorial, we will use Genetic Algorithm to train Multi-Layer Perceptron network for classification task.
For more complex examples and use cases, please check the folder [examples](examples).

```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from metaperceptron import DataTransformer, MhaMlpClassifier

## Load the dataset
X, y = load_iris(return_X_y=True)

## Split train and test
X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.2)

## Scale dataset with two methods: standard and minmax
dt = DataTransformer(scaling_methods=("standard", "minmax"))
X_train_scaled = dt.fit_transform(X_train)
X_test_scaled = dt.transform(X_test)

## Define Genetic Algorithm-trained Multi-Layer Perceptron
opt_paras = {"epoch": 100, "pop_size": 20}
model = MhaMlpClassifier(hidden_layers=(50,), act_names="Tanh", dropout_rates=None, act_output=None,
                         optim="BaseGA", optim_paras=opt_paras, obj_name="F1S", seed=42, verbose=True)
## Train the model
model.fit(X=X_train_scaled, y=y_train)

## Test the model
y_pred = model.predict(X_test)
print(y_pred)

## Print the score
print(model.score(X_test_scaled, y_test))

## Calculate some metrics
print(model.evaluate(y_true=y_test, y_pred=y_pred, list_metrics=["AS", "PS", "RS", "F2S", "CKS", "FBS"]))
```


# Support (questions, problems)

### Official Links 

* Official source code repo: https://github.com/thieu1995/MetaPerceptron
* Official document: https://metapeceptron.readthedocs.io/
* Download releases: https://pypi.org/project/metaperceptron/
* Issue tracker: https://github.com/thieu1995/MetaPerceptron/issues
* Notable changes log: https://github.com/thieu1995/MetaPerceptron/blob/master/ChangeLog.md
* Official chat group: https://t.me/+fRVCJGuGJg1mNDg1

* This project also related to our another projects which are "optimization" and "machine learning", check it here:
    * https://github.com/thieu1995/mealpy
    * https://github.com/thieu1995/metaheuristics
    * https://github.com/thieu1995/opfunu
    * https://github.com/thieu1995/enoppy
    * https://github.com/thieu1995/permetrics
    * https://github.com/thieu1995/MetaCluster
    * https://github.com/thieu1995/pfevaluator
    * https://github.com/thieu1995/IntelELM
    * https://github.com/thieu1995/reflame
    * https://github.com/aiir-team

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thieu1995/MetaPerceptron",
    "name": "metaperceptron",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "multi-layer perceptron, machine learning, artificial intelligence, deep learning, neural networks, single hidden layer network, random projection, FLANN, feed-forward neural network, artificial neural network, classification, regression, supervised learning, online learning, generalization, optimization algorithms, Kernel MLP, Cross-validationGenetic algorithm (GA), Particle swarm optimization (PSO), Ant colony optimization (ACO), Differential evolution (DE), Simulated annealing, Grey wolf optimizer (GWO), Whale Optimization Algorithm (WOA), confusion matrix, recall, precision, accuracy, pearson correlation coefficient (PCC), spearman correlation coefficient (SCC), Global optimization, Convergence analysis, Search space exploration, Local search, Computational intelligence, Robust optimization, metaheuristic, metaheuristic algorithms, nature-inspired computing, nature-inspired algorithms, swarm-based computation, metaheuristic-based multi-layer perceptron, metaheuristic-optimized MLP, Performance analysis, Intelligent optimization, Simulations",
    "author": "Thieu",
    "author_email": "nguyenthieu2102@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d2/8a/386f0e85a1825ef8766de44a85b282dbf80e9c8b9461cbc10d1f94270c9c/metaperceptron-2.0.0.tar.gz",
    "platform": null,
    "description": "\n<p align=\"center\">\n<img style=\"width:100%;\" src=\"https://thieu1995.github.io/post/2023-08/metaperceptron1.png\" alt=\"MetaPerceptron\"/>\n</p>\n\n\n---\n\n[![GitHub release](https://img.shields.io/badge/release-2.0.0-yellow.svg)](https://github.com/thieu1995/MetaPerceptron/releases)\n[![Wheel](https://img.shields.io/pypi/wheel/gensim.svg)](https://pypi.python.org/pypi/metaperceptron) \n[![PyPI version](https://badge.fury.io/py/metaperceptron.svg)](https://badge.fury.io/py/metaperceptron)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/metaperceptron.svg)\n![PyPI - Status](https://img.shields.io/pypi/status/metaperceptron.svg)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/metaperceptron.svg)\n[![Downloads](https://pepy.tech/badge/metaperceptron)](https://pepy.tech/project/metaperceptron)\n[![Tests & Publishes to PyPI](https://github.com/thieu1995/metaperceptron/actions/workflows/publish-package.yaml/badge.svg)](https://github.com/thieu1995/metaperceptron/actions/workflows/publish-package.yaml)\n![GitHub Release Date](https://img.shields.io/github/release-date/thieu1995/metaperceptron.svg)\n[![Documentation Status](https://readthedocs.org/projects/metaperceptron/badge/?version=latest)](https://metaperceptron.readthedocs.io/en/latest/?badge=latest)\n[![Chat](https://img.shields.io/badge/Chat-on%20Telegram-blue)](https://t.me/+fRVCJGuGJg1mNDg1)\n![GitHub contributors](https://img.shields.io/github/contributors/thieu1995/metaperceptron.svg)\n[![GitTutorial](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)](https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)\n[![DOI](https://zenodo.org/badge/676088001.svg)](https://zenodo.org/doi/10.5281/zenodo.10251021)\n[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)\n\n\nMetaPerceptron (Metaheuristic-optimized Multi-Layer Perceptron) is a Python library that implements variants and the \ntraditional version of Multi-Layer Perceptron models. These include Metaheuristic-optimized MLP models (GA, PSO, WOA, TLO, DE, ...) \nand Gradient Descent-optimized MLP models (SGD, Adam, Adelta, Adagrad, ...). It provides a comprehensive list of \noptimizers for training MLP models and is also compatible with the Scikit-Learn library. With MetaPerceptron, \nyou can perform searches and hyperparameter tuning using the features provided by the Scikit-Learn library.\n\n* **Free software:** GNU General Public License (GPL) V3 license\n* **Provided Estimator**: `MlpRegressor`, `MlpClassifier`, `MhaMlpRegressor`, `MhaMlpClassifier`\n* **Provided Utility**: `MhaMlpTuner` and `MhaMlpComparator` \n* **Total Metaheuristic-trained MLP Regressor**: > 200 Models \n* **Total Metaheuristic-trained MLP Classifier**: > 200 Models\n* **Total Gradient Descent-trained MLP Regressor**: 12 Models\n* **Total Gradient Descent-trained MLP Classifier**: 12 Models\n* **Supported performance metrics**: >= 67 (47 regressions and 20 classifications)\n* **Documentation:** https://metaperceptron.readthedocs.io\n* **Python versions:** >= 3.8.x\n* **Dependencies:** numpy, scipy, scikit-learn, torch, mealpy, pandas, permetrics. \n\n\n# Citation Request \n\nIf you want to understand how Metaheuristic is applied to Multi-Layer Perceptron, you need to read the paper \ntitled **\"Let a biogeography-based optimizer train your Multi-Layer Perceptron\"**. \nThe paper can be accessed at the following [link](https://doi.org/10.1016/j.ins.2014.01.038)\n\n\nPlease include these citations if you plan to use this library:\n\n```code\n\n@software{nguyen_van_thieu_2023_10251022,\n  author       = {Nguyen Van Thieu},\n  title        = {MetaPerceptron: A Standardized Framework for Metaheuristic-Trained Multi-Layer Perceptron},\n  month        = dec,\n  year         = 2023,\n  publisher    = {Zenodo},\n  doi          = {10.5281/zenodo.10251021},\n  url          = {https://github.com/thieu1995/MetaPerceptron}\n}\n\n@article{van2023mealpy,\n  title={MEALPY: An open-source library for latest meta-heuristic algorithms in Python},\n  author={Van Thieu, Nguyen and Mirjalili, Seyedali},\n  journal={Journal of Systems Architecture},\n  year={2023},\n  publisher={Elsevier},\n  doi={10.1016/j.sysarc.2023.102871}\n}\n\n@article{van2023groundwater,\n  title={Groundwater level modeling using Augmented Artificial Ecosystem Optimization},\n  author={Van Thieu, Nguyen and Barma, Surajit Deb and Van Lam, To and Kisi, Ozgur and Mahesha, Amai},\n  journal={Journal of Hydrology},\n  volume={617},\n  pages={129034},\n  year={2023},\n  publisher={Elsevier}\n}\n\n@article{thieu2019efficient,\n  title={Efficient time-series forecasting using neural network and opposition-based coral reefs optimization},\n  author={Thieu Nguyen, Tu Nguyen and Nguyen, Binh Minh and Nguyen, Giang},\n  journal={International Journal of Computational Intelligence Systems},\n  volume={12},\n  number={2},\n  pages={1144--1161},\n  year={2019}\n}\n\n```\n\n# Simple Tutorial\n\n* Install the [current PyPI release](https://pypi.python.org/pypi/metaperceptron):\n```sh\n$ pip install metaperceptron==2.0.0\n```\n\n* Check the version:\n\n```sh\n$ python\n>>> import metaperceptron\n>>> metaperceptron.__version__\n```\n\n* Import all provided classes from MetaPerceptron\n\n```python\nfrom metaperceptron import DataTransformer, Data\nfrom metaperceptron import MhaMlpRegressor, MhaMlpClassifier, MlpRegressor, MlpClassifier\nfrom metaperceptron import MhaMlpTuner, MhaMlpComparator\n```\n\n* In this tutorial, we will use Genetic Algorithm to train Multi-Layer Perceptron network for classification task.\nFor more complex examples and use cases, please check the folder [examples](examples).\n\n```python\nfrom sklearn.datasets import load_iris\nfrom sklearn.model_selection import train_test_split\nfrom metaperceptron import DataTransformer, MhaMlpClassifier\n\n## Load the dataset\nX, y = load_iris(return_X_y=True)\n\n## Split train and test\nX_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.2)\n\n## Scale dataset with two methods: standard and minmax\ndt = DataTransformer(scaling_methods=(\"standard\", \"minmax\"))\nX_train_scaled = dt.fit_transform(X_train)\nX_test_scaled = dt.transform(X_test)\n\n## Define Genetic Algorithm-trained Multi-Layer Perceptron\nopt_paras = {\"epoch\": 100, \"pop_size\": 20}\nmodel = MhaMlpClassifier(hidden_layers=(50,), act_names=\"Tanh\", dropout_rates=None, act_output=None,\n                         optim=\"BaseGA\", optim_paras=opt_paras, obj_name=\"F1S\", seed=42, verbose=True)\n## Train the model\nmodel.fit(X=X_train_scaled, y=y_train)\n\n## Test the model\ny_pred = model.predict(X_test)\nprint(y_pred)\n\n## Print the score\nprint(model.score(X_test_scaled, y_test))\n\n## Calculate some metrics\nprint(model.evaluate(y_true=y_test, y_pred=y_pred, list_metrics=[\"AS\", \"PS\", \"RS\", \"F2S\", \"CKS\", \"FBS\"]))\n```\n\n\n# Support (questions, problems)\n\n### Official Links \n\n* Official source code repo: https://github.com/thieu1995/MetaPerceptron\n* Official document: https://metapeceptron.readthedocs.io/\n* Download releases: https://pypi.org/project/metaperceptron/\n* Issue tracker: https://github.com/thieu1995/MetaPerceptron/issues\n* Notable changes log: https://github.com/thieu1995/MetaPerceptron/blob/master/ChangeLog.md\n* Official chat group: https://t.me/+fRVCJGuGJg1mNDg1\n\n* This project also related to our another projects which are \"optimization\" and \"machine learning\", check it here:\n    * https://github.com/thieu1995/mealpy\n    * https://github.com/thieu1995/metaheuristics\n    * https://github.com/thieu1995/opfunu\n    * https://github.com/thieu1995/enoppy\n    * https://github.com/thieu1995/permetrics\n    * https://github.com/thieu1995/MetaCluster\n    * https://github.com/thieu1995/pfevaluator\n    * https://github.com/thieu1995/IntelELM\n    * https://github.com/thieu1995/reflame\n    * https://github.com/aiir-team\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "MetaPerceptron: A Standardized Framework for Metaheuristic-Trained Multi-Layer Perceptron",
    "version": "2.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/thieu1995/MetaPerceptron/issues",
        "Change Log": "https://github.com/thieu1995/MetaPerceptron/blob/main/ChangeLog.md",
        "Documentation": "https://metaperceptron.readthedocs.io/",
        "Forum": "https://t.me/+fRVCJGuGJg1mNDg1",
        "Homepage": "https://github.com/thieu1995/MetaPerceptron",
        "Source Code": "https://github.com/thieu1995/MetaPerceptron"
    },
    "split_keywords": [
        "multi-layer perceptron",
        " machine learning",
        " artificial intelligence",
        " deep learning",
        " neural networks",
        " single hidden layer network",
        " random projection",
        " flann",
        " feed-forward neural network",
        " artificial neural network",
        " classification",
        " regression",
        " supervised learning",
        " online learning",
        " generalization",
        " optimization algorithms",
        " kernel mlp",
        " cross-validationgenetic algorithm (ga)",
        " particle swarm optimization (pso)",
        " ant colony optimization (aco)",
        " differential evolution (de)",
        " simulated annealing",
        " grey wolf optimizer (gwo)",
        " whale optimization algorithm (woa)",
        " confusion matrix",
        " recall",
        " precision",
        " accuracy",
        " pearson correlation coefficient (pcc)",
        " spearman correlation coefficient (scc)",
        " global optimization",
        " convergence analysis",
        " search space exploration",
        " local search",
        " computational intelligence",
        " robust optimization",
        " metaheuristic",
        " metaheuristic algorithms",
        " nature-inspired computing",
        " nature-inspired algorithms",
        " swarm-based computation",
        " metaheuristic-based multi-layer perceptron",
        " metaheuristic-optimized mlp",
        " performance analysis",
        " intelligent optimization",
        " simulations"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f7164c588d0ab9416a623e0668a1b8272ae05bcd59e55f00f149326ffffceffa",
                "md5": "24cf87ac2a03bfd8c1737040da335ef8",
                "sha256": "83b4edd3ae3bffb145f1d37ef7416c5011ae74df57c5b66f17b60e0706defed3"
            },
            "downloads": -1,
            "filename": "metaperceptron-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "24cf87ac2a03bfd8c1737040da335ef8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 45357,
            "upload_time": "2024-11-04T07:36:01",
            "upload_time_iso_8601": "2024-11-04T07:36:01.924355Z",
            "url": "https://files.pythonhosted.org/packages/f7/16/4c588d0ab9416a623e0668a1b8272ae05bcd59e55f00f149326ffffceffa/metaperceptron-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d28a386f0e85a1825ef8766de44a85b282dbf80e9c8b9461cbc10d1f94270c9c",
                "md5": "03b58b65f69e14154fa64ae10f2e8dea",
                "sha256": "3a1d3bf5ef863bea00ac3475064b940f0bca80d813c3baefc3c3a47d548be6c4"
            },
            "downloads": -1,
            "filename": "metaperceptron-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "03b58b65f69e14154fa64ae10f2e8dea",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 48814,
            "upload_time": "2024-11-04T07:36:03",
            "upload_time_iso_8601": "2024-11-04T07:36:03.516363Z",
            "url": "https://files.pythonhosted.org/packages/d2/8a/386f0e85a1825ef8766de44a85b282dbf80e9c8b9461cbc10d1f94270c9c/metaperceptron-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-04 07:36:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thieu1995",
    "github_project": "MetaPerceptron",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.17.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.5"
                ]
            ]
        },
        {
            "name": "mealpy",
            "specs": [
                [
                    ">=",
                    "3.0.1"
                ]
            ]
        },
        {
            "name": "permetrics",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    "==",
                    "7.1.2"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    "==",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    ">=",
                    "4.0.1"
                ]
            ]
        }
    ],
    "lcname": "metaperceptron"
}
        
Elapsed time: 0.45023s