metorial-anthropic


Namemetorial-anthropic JSON
Version 1.0.0rc3 PyPI version JSON
download
home_pageNone
SummaryAnthropic (Claude) provider for Metorial
upload_time2025-07-26 12:37:20
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords ai anthropic claude llm metorial
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # metorial-anthropic

Anthropic (Claude) provider integration for Metorial - enables using Metorial tools with Claude models through Anthropic's tool calling API.

## Installation

```bash
pip install metorial-anthropic
# or
uv add metorial-anthropic
# or
poetry add metorial-anthropic
```

## Features

- 🤖 **Claude Integration**: Full support for Claude 3.5, Claude 3, and other Anthropic models
- 🛠️ **Tool Calling**: Native Anthropic tool format support
- 📡 **Session Management**: Automatic tool lifecycle handling
- 🔄 **Format Conversion**: Converts Metorial tools to Anthropic tool format
- ⚡ **Async Support**: Full async/await support

## Usage

### Basic Usage

```python
import asyncio
from anthropic import Anthropic
from metorial import Metorial
from metorial_anthropic import MetorialAnthropicSession

async def main():
    # Initialize clients
    metorial = Metorial(api_key="your-metorial-api-key")
    anthropic = Anthropic(api_key="your-anthropic-api-key")
    
    # Create session with your server deployments
    async with metorial.session(["your-server-deployment-id"]) as session:
        # Create Anthropic-specific wrapper
        anthropic_session = MetorialAnthropicSession(session.tool_manager)
        
        messages = [
            {"role": "user", "content": "What are the latest commits?"}
        ]
        
        # Remove duplicate tools by name (Anthropic requirement)
        unique_tools = list({t["name"]: t for t in anthropic_session.tools}.values())
        
        response = await anthropic.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1024,
            messages=messages,
            tools=unique_tools
        )
        
        # Handle tool calls
        tool_calls = [c for c in response.content if c.type == "tool_use"]
        if tool_calls:
            tool_response = await anthropic_session.call_tools(tool_calls)
            messages.append({"role": "assistant", "content": response.content})
            messages.append(tool_response)
            
            # Continue conversation...

asyncio.run(main())
```

### Using Convenience Functions

```python
from metorial_anthropic import build_anthropic_tools, call_anthropic_tools

async def example_with_functions():
    # Get tools in Anthropic format
    tools = build_anthropic_tools(tool_manager)
    
    # Call tools from Anthropic response
    tool_response = await call_anthropic_tools(tool_manager, tool_calls)
```

## API Reference

### `MetorialAnthropicSession`

Main session class for Anthropic integration.

```python
session = MetorialAnthropicSession(tool_manager)
```

**Properties:**
- `tools`: List of tools in Anthropic format

**Methods:**
- `async call_tools(tool_calls)`: Execute tool calls and return user message

### `build_anthropic_tools(tool_mgr)`

Build Anthropic-compatible tool definitions.

**Returns:** List of tool definitions in Anthropic format

### `call_anthropic_tools(tool_mgr, tool_calls)`

Execute tool calls from Anthropic response.

**Returns:** User message with tool results

## Tool Format

Tools are converted to Anthropic's format:

```python
{
    "name": "tool_name",
    "description": "Tool description",
    "input_schema": {
        "type": "object",
        "properties": {...},
        "required": [...]
    }
}
```

## Error Handling

```python
try:
    tool_response = await anthropic_session.call_tools(tool_calls)
except Exception as e:
    print(f"Tool execution failed: {e}")
```

Tool errors are returned as error messages in the response format.

## Dependencies

- `anthropic>=0.40.0`
- `metorial-mcp-session>=1.0.0`
- `typing-extensions>=4.0.0`

## License

MIT License - see [LICENSE](../../LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "metorial-anthropic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "ai, anthropic, claude, llm, metorial",
    "author": null,
    "author_email": "Metorial Team <support@metorial.com>",
    "download_url": "https://files.pythonhosted.org/packages/4f/28/643238c179b6e719eb1d2155c2836b60719ed5b6e46a07c1192e30d902cb/metorial_anthropic-1.0.0rc3.tar.gz",
    "platform": null,
    "description": "# metorial-anthropic\n\nAnthropic (Claude) provider integration for Metorial - enables using Metorial tools with Claude models through Anthropic's tool calling API.\n\n## Installation\n\n```bash\npip install metorial-anthropic\n# or\nuv add metorial-anthropic\n# or\npoetry add metorial-anthropic\n```\n\n## Features\n\n- \ud83e\udd16 **Claude Integration**: Full support for Claude 3.5, Claude 3, and other Anthropic models\n- \ud83d\udee0\ufe0f **Tool Calling**: Native Anthropic tool format support\n- \ud83d\udce1 **Session Management**: Automatic tool lifecycle handling\n- \ud83d\udd04 **Format Conversion**: Converts Metorial tools to Anthropic tool format\n- \u26a1 **Async Support**: Full async/await support\n\n## Usage\n\n### Basic Usage\n\n```python\nimport asyncio\nfrom anthropic import Anthropic\nfrom metorial import Metorial\nfrom metorial_anthropic import MetorialAnthropicSession\n\nasync def main():\n    # Initialize clients\n    metorial = Metorial(api_key=\"your-metorial-api-key\")\n    anthropic = Anthropic(api_key=\"your-anthropic-api-key\")\n    \n    # Create session with your server deployments\n    async with metorial.session([\"your-server-deployment-id\"]) as session:\n        # Create Anthropic-specific wrapper\n        anthropic_session = MetorialAnthropicSession(session.tool_manager)\n        \n        messages = [\n            {\"role\": \"user\", \"content\": \"What are the latest commits?\"}\n        ]\n        \n        # Remove duplicate tools by name (Anthropic requirement)\n        unique_tools = list({t[\"name\"]: t for t in anthropic_session.tools}.values())\n        \n        response = await anthropic.messages.create(\n            model=\"claude-3-5-sonnet-20241022\",\n            max_tokens=1024,\n            messages=messages,\n            tools=unique_tools\n        )\n        \n        # Handle tool calls\n        tool_calls = [c for c in response.content if c.type == \"tool_use\"]\n        if tool_calls:\n            tool_response = await anthropic_session.call_tools(tool_calls)\n            messages.append({\"role\": \"assistant\", \"content\": response.content})\n            messages.append(tool_response)\n            \n            # Continue conversation...\n\nasyncio.run(main())\n```\n\n### Using Convenience Functions\n\n```python\nfrom metorial_anthropic import build_anthropic_tools, call_anthropic_tools\n\nasync def example_with_functions():\n    # Get tools in Anthropic format\n    tools = build_anthropic_tools(tool_manager)\n    \n    # Call tools from Anthropic response\n    tool_response = await call_anthropic_tools(tool_manager, tool_calls)\n```\n\n## API Reference\n\n### `MetorialAnthropicSession`\n\nMain session class for Anthropic integration.\n\n```python\nsession = MetorialAnthropicSession(tool_manager)\n```\n\n**Properties:**\n- `tools`: List of tools in Anthropic format\n\n**Methods:**\n- `async call_tools(tool_calls)`: Execute tool calls and return user message\n\n### `build_anthropic_tools(tool_mgr)`\n\nBuild Anthropic-compatible tool definitions.\n\n**Returns:** List of tool definitions in Anthropic format\n\n### `call_anthropic_tools(tool_mgr, tool_calls)`\n\nExecute tool calls from Anthropic response.\n\n**Returns:** User message with tool results\n\n## Tool Format\n\nTools are converted to Anthropic's format:\n\n```python\n{\n    \"name\": \"tool_name\",\n    \"description\": \"Tool description\",\n    \"input_schema\": {\n        \"type\": \"object\",\n        \"properties\": {...},\n        \"required\": [...]\n    }\n}\n```\n\n## Error Handling\n\n```python\ntry:\n    tool_response = await anthropic_session.call_tools(tool_calls)\nexcept Exception as e:\n    print(f\"Tool execution failed: {e}\")\n```\n\nTool errors are returned as error messages in the response format.\n\n## Dependencies\n\n- `anthropic>=0.40.0`\n- `metorial-mcp-session>=1.0.0`\n- `typing-extensions>=4.0.0`\n\n## License\n\nMIT License - see [LICENSE](../../LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Anthropic (Claude) provider for Metorial",
    "version": "1.0.0rc3",
    "project_urls": {
        "Documentation": "https://metorial.com/docs",
        "Homepage": "https://metorial.com",
        "Repository": "https://github.com/metorial/metorial-enterprise"
    },
    "split_keywords": [
        "ai",
        " anthropic",
        " claude",
        " llm",
        " metorial"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ed7819dadc9657c09dcfcde8150e7705b31b19abd9e103034f9d5248e0f4411f",
                "md5": "d80f10cc86ed1ca73fa9e776f0d40687",
                "sha256": "b2cba93ec4c44d09920f007707d44158bba44130e55f45bc2abc20dfdc20bcb6"
            },
            "downloads": -1,
            "filename": "metorial_anthropic-1.0.0rc3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d80f10cc86ed1ca73fa9e776f0d40687",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 4863,
            "upload_time": "2025-07-26T12:37:19",
            "upload_time_iso_8601": "2025-07-26T12:37:19.490472Z",
            "url": "https://files.pythonhosted.org/packages/ed/78/19dadc9657c09dcfcde8150e7705b31b19abd9e103034f9d5248e0f4411f/metorial_anthropic-1.0.0rc3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4f28643238c179b6e719eb1d2155c2836b60719ed5b6e46a07c1192e30d902cb",
                "md5": "a39826c52a059fd2831630bced11372d",
                "sha256": "c81023b63818d0d8bf125afc9ca2367574944207658e8aaa1e549fa520f2bf57"
            },
            "downloads": -1,
            "filename": "metorial_anthropic-1.0.0rc3.tar.gz",
            "has_sig": false,
            "md5_digest": "a39826c52a059fd2831630bced11372d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 5786,
            "upload_time": "2025-07-26T12:37:20",
            "upload_time_iso_8601": "2025-07-26T12:37:20.869607Z",
            "url": "https://files.pythonhosted.org/packages/4f/28/643238c179b6e719eb1d2155c2836b60719ed5b6e46a07c1192e30d902cb/metorial_anthropic-1.0.0rc3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-26 12:37:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "metorial",
    "github_project": "metorial-enterprise",
    "github_not_found": true,
    "lcname": "metorial-anthropic"
}
        
Elapsed time: 0.75857s