metorial-openai


Namemetorial-openai JSON
Version 1.0.0rc2 PyPI version JSON
download
home_pageNone
SummaryOpenAI provider for Metorial
upload_time2025-07-26 12:17:49
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords ai llm metorial openai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # metorial-openai

OpenAI provider integration for Metorial - enables using Metorial tools with OpenAI's language models through function calling.

## Installation

```bash
pip install metorial-openai
# or
uv add metorial-openai
# or
poetry add metorial-openai
```

## Features

- 🤖 **OpenAI Integration**: Full support for GPT-4, GPT-3.5, and other OpenAI models
- 🛠️ **Function Calling**: Native OpenAI function calling support
- 📡 **Session Management**: Automatic tool lifecycle handling
- 🔄 **Format Conversion**: Converts Metorial tools to OpenAI function format
- ✅ **Strict Mode**: Optional strict parameter validation
- ⚡ **Async Support**: Full async/await support

## Usage

### Basic Usage

```python
import asyncio
from openai import OpenAI
from metorial import Metorial
from metorial_openai import MetorialOpenAISession

async def main():
    # Initialize clients
    metorial = Metorial(api_key="your-metorial-api-key")
    openai_client = OpenAI(api_key="your-openai-api-key")
    
    # Create session with your server deployments
    async with metorial.session(["your-server-deployment-id"]) as session:
        # Create OpenAI-specific wrapper
        openai_session = MetorialOpenAISession(session.tool_manager)
        
        messages = [
            {"role": "user", "content": "What are the latest commits?"}
        ]
        
        response = openai_client.chat.completions.create(
            model="gpt-4",
            messages=messages,
            tools=openai_session.tools
        )
        
        # Handle tool calls
        tool_calls = response.choices[0].message.tool_calls
        if tool_calls:
            tool_responses = await openai_session.call_tools(tool_calls)
            
            # Add to conversation
            messages.append({
                "role": "assistant",
                "tool_calls": tool_calls
            })
            messages.extend(tool_responses)
            
            # Continue conversation...

asyncio.run(main())
```

### Using Convenience Functions

```python
from metorial_openai import build_openai_tools, call_openai_tools

async def example_with_functions():
    # Get tools in OpenAI format
    tools = build_openai_tools(tool_manager)
    
    # Call tools from OpenAI response
    tool_messages = await call_openai_tools(tool_manager, tool_calls)
```

## API Reference

### `MetorialOpenAISession`

Main session class for OpenAI integration.

```python
session = MetorialOpenAISession(tool_manager)
```

**Properties:**
- `tools`: List of tools in OpenAI function calling format

**Methods:**
- `async call_tools(tool_calls)`: Execute tool calls and return tool messages

### `build_openai_tools(tool_mgr)`

Build OpenAI-compatible tool definitions.

**Returns:** List of tool definitions in OpenAI format

### `call_openai_tools(tool_mgr, tool_calls)`

Execute tool calls from OpenAI response.

**Returns:** List of tool messages

## Tool Format

Tools are converted to OpenAI's function calling format:

```python
{
    "type": "function",
    "function": {
        "name": "tool_name",
        "description": "Tool description",
        "parameters": {
            "type": "object",
            "properties": {...},
            "required": [...]
        }
    }
}
```

## Supported Models

All OpenAI models that support function calling:

- `gpt-4o`: Latest GPT-4 Omni model
- `gpt-4o-mini`: Smaller, faster GPT-4 Omni model
- `gpt-4-turbo`: GPT-4 Turbo
- `gpt-4`: Standard GPT-4
- `gpt-3.5-turbo`: GPT-3.5 Turbo
- And other function calling enabled models

## Error Handling

```python
try:
    tool_messages = await openai_session.call_tools(tool_calls)
except Exception as e:
    print(f"Tool execution failed: {e}")
```

Tool errors are returned as tool messages with error content.

## Dependencies

- `openai>=1.0.0`
- `metorial-mcp-session>=1.0.0`  
- `typing-extensions>=4.0.0`

## License

MIT License - see [LICENSE](../../LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "metorial-openai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "ai, llm, metorial, openai",
    "author": null,
    "author_email": "Metorial Team <support@metorial.com>",
    "download_url": "https://files.pythonhosted.org/packages/7a/35/fc5606a8e9f6f52766f29be0ebd58634c920efac26e2dfcf536dc4834369/metorial_openai-1.0.0rc2.tar.gz",
    "platform": null,
    "description": "# metorial-openai\n\nOpenAI provider integration for Metorial - enables using Metorial tools with OpenAI's language models through function calling.\n\n## Installation\n\n```bash\npip install metorial-openai\n# or\nuv add metorial-openai\n# or\npoetry add metorial-openai\n```\n\n## Features\n\n- \ud83e\udd16 **OpenAI Integration**: Full support for GPT-4, GPT-3.5, and other OpenAI models\n- \ud83d\udee0\ufe0f **Function Calling**: Native OpenAI function calling support\n- \ud83d\udce1 **Session Management**: Automatic tool lifecycle handling\n- \ud83d\udd04 **Format Conversion**: Converts Metorial tools to OpenAI function format\n- \u2705 **Strict Mode**: Optional strict parameter validation\n- \u26a1 **Async Support**: Full async/await support\n\n## Usage\n\n### Basic Usage\n\n```python\nimport asyncio\nfrom openai import OpenAI\nfrom metorial import Metorial\nfrom metorial_openai import MetorialOpenAISession\n\nasync def main():\n    # Initialize clients\n    metorial = Metorial(api_key=\"your-metorial-api-key\")\n    openai_client = OpenAI(api_key=\"your-openai-api-key\")\n    \n    # Create session with your server deployments\n    async with metorial.session([\"your-server-deployment-id\"]) as session:\n        # Create OpenAI-specific wrapper\n        openai_session = MetorialOpenAISession(session.tool_manager)\n        \n        messages = [\n            {\"role\": \"user\", \"content\": \"What are the latest commits?\"}\n        ]\n        \n        response = openai_client.chat.completions.create(\n            model=\"gpt-4\",\n            messages=messages,\n            tools=openai_session.tools\n        )\n        \n        # Handle tool calls\n        tool_calls = response.choices[0].message.tool_calls\n        if tool_calls:\n            tool_responses = await openai_session.call_tools(tool_calls)\n            \n            # Add to conversation\n            messages.append({\n                \"role\": \"assistant\",\n                \"tool_calls\": tool_calls\n            })\n            messages.extend(tool_responses)\n            \n            # Continue conversation...\n\nasyncio.run(main())\n```\n\n### Using Convenience Functions\n\n```python\nfrom metorial_openai import build_openai_tools, call_openai_tools\n\nasync def example_with_functions():\n    # Get tools in OpenAI format\n    tools = build_openai_tools(tool_manager)\n    \n    # Call tools from OpenAI response\n    tool_messages = await call_openai_tools(tool_manager, tool_calls)\n```\n\n## API Reference\n\n### `MetorialOpenAISession`\n\nMain session class for OpenAI integration.\n\n```python\nsession = MetorialOpenAISession(tool_manager)\n```\n\n**Properties:**\n- `tools`: List of tools in OpenAI function calling format\n\n**Methods:**\n- `async call_tools(tool_calls)`: Execute tool calls and return tool messages\n\n### `build_openai_tools(tool_mgr)`\n\nBuild OpenAI-compatible tool definitions.\n\n**Returns:** List of tool definitions in OpenAI format\n\n### `call_openai_tools(tool_mgr, tool_calls)`\n\nExecute tool calls from OpenAI response.\n\n**Returns:** List of tool messages\n\n## Tool Format\n\nTools are converted to OpenAI's function calling format:\n\n```python\n{\n    \"type\": \"function\",\n    \"function\": {\n        \"name\": \"tool_name\",\n        \"description\": \"Tool description\",\n        \"parameters\": {\n            \"type\": \"object\",\n            \"properties\": {...},\n            \"required\": [...]\n        }\n    }\n}\n```\n\n## Supported Models\n\nAll OpenAI models that support function calling:\n\n- `gpt-4o`: Latest GPT-4 Omni model\n- `gpt-4o-mini`: Smaller, faster GPT-4 Omni model\n- `gpt-4-turbo`: GPT-4 Turbo\n- `gpt-4`: Standard GPT-4\n- `gpt-3.5-turbo`: GPT-3.5 Turbo\n- And other function calling enabled models\n\n## Error Handling\n\n```python\ntry:\n    tool_messages = await openai_session.call_tools(tool_calls)\nexcept Exception as e:\n    print(f\"Tool execution failed: {e}\")\n```\n\nTool errors are returned as tool messages with error content.\n\n## Dependencies\n\n- `openai>=1.0.0`\n- `metorial-mcp-session>=1.0.0`  \n- `typing-extensions>=4.0.0`\n\n## License\n\nMIT License - see [LICENSE](../../LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "OpenAI provider for Metorial",
    "version": "1.0.0rc2",
    "project_urls": {
        "Documentation": "https://metorial.com/docs",
        "Homepage": "https://metorial.com",
        "Repository": "https://github.com/metorial/metorial-enterprise"
    },
    "split_keywords": [
        "ai",
        " llm",
        " metorial",
        " openai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e67b7efdb75243a97e8c459f73c3dfc4ecaabbbc62821acb57954562ed5ee566",
                "md5": "f2ed76ed9764cd1939c7c40d6c1944e4",
                "sha256": "b6945cfddade2792b4c010b3b1154da4e148d0d05f0a6262a8780ef7cf4b338e"
            },
            "downloads": -1,
            "filename": "metorial_openai-1.0.0rc2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f2ed76ed9764cd1939c7c40d6c1944e4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 4723,
            "upload_time": "2025-07-26T12:17:45",
            "upload_time_iso_8601": "2025-07-26T12:17:45.781129Z",
            "url": "https://files.pythonhosted.org/packages/e6/7b/7efdb75243a97e8c459f73c3dfc4ecaabbbc62821acb57954562ed5ee566/metorial_openai-1.0.0rc2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7a35fc5606a8e9f6f52766f29be0ebd58634c920efac26e2dfcf536dc4834369",
                "md5": "fd225fdfc60ef620f3360695cacf85ba",
                "sha256": "6cb4368f2d7f5f42e28e3e3a8c9629dab084b4cab6fe9d24e9fd8d2f91ac84be"
            },
            "downloads": -1,
            "filename": "metorial_openai-1.0.0rc2.tar.gz",
            "has_sig": false,
            "md5_digest": "fd225fdfc60ef620f3360695cacf85ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 5775,
            "upload_time": "2025-07-26T12:17:49",
            "upload_time_iso_8601": "2025-07-26T12:17:49.499813Z",
            "url": "https://files.pythonhosted.org/packages/7a/35/fc5606a8e9f6f52766f29be0ebd58634c920efac26e2dfcf536dc4834369/metorial_openai-1.0.0rc2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-26 12:17:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "metorial",
    "github_project": "metorial-enterprise",
    "github_not_found": true,
    "lcname": "metorial-openai"
}
        
Elapsed time: 1.79698s