mixmasta


Namemixmasta JSON
Version 0.6.9 PyPI version JSON
download
home_pagehttps://github.com/jataware/mixmasta
SummaryA library for common scientific model transforms
upload_time2022-12-13 17:37:55
maintainer
docs_urlNone
authorBrandon Rose
requires_python>=3.5
licenseMIT license
keywords mixmasta
VCS
bugtrack_url
requirements bump2version Click coverage Cython flake8 fuzzywuzzy GDAL geofeather geopandas netCDF4 numpy openpyxl pip pydantic pyproj python-Levenshtein rasterio Rtree Shapely Sphinx tox tqdm twine watchdog wheel xarray xlrd
Travis-CI
coveralls test coverage No coveralls.
            # mixmasta
[![Python Tests](https://github.com/jataware/mixmasta/actions/workflows/python.yaml/badge.svg)](https://github.com/jataware/mixmasta/actions/workflows/python.yaml)

A library for common scientific model transforms. This library enables fast and intuitive transforms including:

* Converting a `geotiff` to a `csv`
* Converting a `NetCDF` to a `csv`
* Geocoding `csv`, `xls`, and `xlsx` data that contains latitude and longitude


## Setup

See `docs/docker.md` for instructions on running Mixmasta in Docker (easiest!).

Ensure you have a working installation of [GDAL](https://trac.osgeo.org/gdal/wiki/FAQInstallationAndBuilding#FAQ-InstallationandBuilding)

You also need to ensure that `numpy` is installed prior to `mixmasta` installation. This is an artifact of GDAL, which will build incorrectly if `numpy` is not already configured:

```
pip install numpy==1.20.1
pip install mixmasta
```

> Note: if you had a prior installation of GDAL you may need to run `pip install mixmasta --no-cache-dir` in a clean environment.

You must install the GADM2 and GADM3 data with:

```
mixmasta download
```

## Usage


Examples can be found in the `input` directory.

Convert a geotiff to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)
```

Note that you should specify the data band of the geotiff to process if it is multi-band. You may also specify the name of the feature column to produce. You may optionally specify a `date` if the geotiff has an associated date. For example:

Convert a NetCDF to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.netcdf2df('tos_O1_2001-2002.nc')
```

Geocode a dataframe:

```
from mixmasta import mixmasta as mix

# First, load in the geotiff as a dataframe
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)

# next, we can geocode the dataframe to the admin-level desired (`admin2` or `admin3`)
# by specifying the names of the x and y columns
# in this case, we will geocode to admin2 where x,y are are 'longitude' and 'latitude', respectively.
df_g = mix.geocode("admin2", df, x='longitude', y='latitude')
```

## Running with CLI

After cloning the repository and changing to the `mixmasta` directory, you can run mixmasta via the command line.

Set-up:

While you can point `mixmasta` to any file you would like to transform, the examples below assume your file is in the `inputs` folder; the transformed `.csv` file will be written to the `outputs` folder.

- Transform geotiff to geocoded csv:
```
mixmasta mix --xform=geotiff --input_file=chirps-v2.0.2021.01.3.tif --output_file=geotiffTEST.csv --geo=admin2 --feature_name=rainfall --band=1 --date='5/4/2010' --x=longitude --y=latitude
```

- Transform geotiff to csv:
```
mixmasta mix --xform=geotiff --input_file=maxhop1.tif --output_file=maxhopOUT.csv --geo=admin2 --feature_name=probabilty --band=1 --x=longitude --y=latitude
```

- Transform netcdf to geocoded csv:

```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv --geo=admin2 --x=lon --y=lat
```

- Transform netcdf to csv:
```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv
```

-geocode an existing csv file:

```
mixmasta mix --xform=geocode --input_file=no_geo.csv --geo=admin3 --output_file=geoed_no_geo.csv --x=longitude --y=latitude
```

## World Modelers Specific Normalization

For the World Modelers program, it is necessary to convert arbitrary `csv`, `geotiff`, and `netcdf` files into a CauseMos compliant format. This can be accomplished by leveraging a `mapping` annotation file and the `causemosify` command. The output is a `gzipped` `parquet` file. This may be invoked with:

```
mixmasta causemosify --input_file=chirps-v2.0.2021.01.3.tif --mapper=mapper.json --geo=admin3 --output_file=causemosified_example
```

This will produce a file called `causemosified_example.parquet.gzip` which can be read using Pandas with:

```
pd.read_parquet('causemosified_example.parquet.gzip')
```

## Other Documents
- Docker Instructions: `docs/docker.md`
- Geo Entity Resolution Description: `docs/geo-tentity-resolution.md`
- Package Testing in SpaceTag Env: `docs/spacetag-test.md`

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

## 0.1.0 (2021-02-24)

-   First release on PyPI.




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jataware/mixmasta",
    "name": "mixmasta",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "mixmasta",
    "author": "Brandon Rose",
    "author_email": "brandon@jataware.com",
    "download_url": "https://files.pythonhosted.org/packages/42/21/cf29f591d0a0fa76e0f4ad46febc7e7a63dcd84251054513b67d2531c5cc/mixmasta-0.6.9.tar.gz",
    "platform": null,
    "description": "# mixmasta\n[![Python Tests](https://github.com/jataware/mixmasta/actions/workflows/python.yaml/badge.svg)](https://github.com/jataware/mixmasta/actions/workflows/python.yaml)\n\nA library for common scientific model transforms. This library enables fast and intuitive transforms including:\n\n* Converting a `geotiff` to a `csv`\n* Converting a `NetCDF` to a `csv`\n* Geocoding `csv`, `xls`, and `xlsx` data that contains latitude and longitude\n\n\n## Setup\n\nSee `docs/docker.md` for instructions on running Mixmasta in Docker (easiest!).\n\nEnsure you have a working installation of [GDAL](https://trac.osgeo.org/gdal/wiki/FAQInstallationAndBuilding#FAQ-InstallationandBuilding)\n\nYou also need to ensure that `numpy` is installed prior to `mixmasta` installation. This is an artifact of GDAL, which will build incorrectly if `numpy` is not already configured:\n\n```\npip install numpy==1.20.1\npip install mixmasta\n```\n\n> Note: if you had a prior installation of GDAL you may need to run `pip install mixmasta --no-cache-dir` in a clean environment.\n\nYou must install the GADM2 and GADM3 data with:\n\n```\nmixmasta download\n```\n\n## Usage\n\n\nExamples can be found in the `input` directory.\n\nConvert a geotiff to a dataframe with:\n\n```\nfrom mixmasta import mixmasta as mix\ndf = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)\n```\n\nNote that you should specify the data band of the geotiff to process if it is multi-band. You may also specify the name of the feature column to produce. You may optionally specify a `date` if the geotiff has an associated date. For example:\n\nConvert a NetCDF to a dataframe with:\n\n```\nfrom mixmasta import mixmasta as mix\ndf = mix.netcdf2df('tos_O1_2001-2002.nc')\n```\n\nGeocode a dataframe:\n\n```\nfrom mixmasta import mixmasta as mix\n\n# First, load in the geotiff as a dataframe\ndf = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)\n\n# next, we can geocode the dataframe to the admin-level desired (`admin2` or `admin3`)\n# by specifying the names of the x and y columns\n# in this case, we will geocode to admin2 where x,y are are 'longitude' and 'latitude', respectively.\ndf_g = mix.geocode(\"admin2\", df, x='longitude', y='latitude')\n```\n\n## Running with CLI\n\nAfter cloning the repository and changing to the `mixmasta` directory, you can run mixmasta via the command line.\n\nSet-up:\n\nWhile you can point `mixmasta` to any file you would like to transform, the examples below assume your file is in the `inputs` folder; the transformed `.csv` file will be written to the `outputs` folder.\n\n- Transform geotiff to geocoded csv:\n```\nmixmasta mix --xform=geotiff --input_file=chirps-v2.0.2021.01.3.tif --output_file=geotiffTEST.csv --geo=admin2 --feature_name=rainfall --band=1 --date='5/4/2010' --x=longitude --y=latitude\n```\n\n- Transform geotiff to csv:\n```\nmixmasta mix --xform=geotiff --input_file=maxhop1.tif --output_file=maxhopOUT.csv --geo=admin2 --feature_name=probabilty --band=1 --x=longitude --y=latitude\n```\n\n- Transform netcdf to geocoded csv:\n\n```\nmixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv --geo=admin2 --x=lon --y=lat\n```\n\n- Transform netcdf to csv:\n```\nmixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv\n```\n\n-geocode an existing csv file:\n\n```\nmixmasta mix --xform=geocode --input_file=no_geo.csv --geo=admin3 --output_file=geoed_no_geo.csv --x=longitude --y=latitude\n```\n\n## World Modelers Specific Normalization\n\nFor the World Modelers program, it is necessary to convert arbitrary `csv`, `geotiff`, and `netcdf` files into a CauseMos compliant format. This can be accomplished by leveraging a `mapping` annotation file and the `causemosify` command. The output is a `gzipped` `parquet` file. This may be invoked with:\n\n```\nmixmasta causemosify --input_file=chirps-v2.0.2021.01.3.tif --mapper=mapper.json --geo=admin3 --output_file=causemosified_example\n```\n\nThis will produce a file called `causemosified_example.parquet.gzip` which can be read using Pandas with:\n\n```\npd.read_parquet('causemosified_example.parquet.gzip')\n```\n\n## Other Documents\n- Docker Instructions: `docs/docker.md`\n- Geo Entity Resolution Description: `docs/geo-tentity-resolution.md`\n- Package Testing in SpaceTag Env: `docs/spacetag-test.md`\n\n## Credits\n\nThis package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.\n\n\n# History\n\n## 0.1.0 (2021-02-24)\n\n-   First release on PyPI.\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "A library for common scientific model transforms",
    "version": "0.6.9",
    "split_keywords": [
        "mixmasta"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "9d404092075973ceabc3de47965135d6",
                "sha256": "2b327cdddef20f8f92ec06865281e13834a7b5bf5f02a5aebbd88013a75c3b23"
            },
            "downloads": -1,
            "filename": "mixmasta-0.6.9-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d404092075973ceabc3de47965135d6",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.5",
            "size": 31969,
            "upload_time": "2022-12-13T17:37:53",
            "upload_time_iso_8601": "2022-12-13T17:37:53.386417Z",
            "url": "https://files.pythonhosted.org/packages/06/69/64f8fd00f0d8869753c5811ad805f10da936c211ab386e8a5ed7c678ad71/mixmasta-0.6.9-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "39c698c50ad9db243e3b0e7216ffdedf",
                "sha256": "20d4f27c46732b1b606e18aad255612b91030968067bbdb8fccf776a3f2e81c3"
            },
            "downloads": -1,
            "filename": "mixmasta-0.6.9.tar.gz",
            "has_sig": false,
            "md5_digest": "39c698c50ad9db243e3b0e7216ffdedf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 2934315,
            "upload_time": "2022-12-13T17:37:55",
            "upload_time_iso_8601": "2022-12-13T17:37:55.612873Z",
            "url": "https://files.pythonhosted.org/packages/42/21/cf29f591d0a0fa76e0f4ad46febc7e7a63dcd84251054513b67d2531c5cc/mixmasta-0.6.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-13 17:37:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "jataware",
    "github_project": "mixmasta",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "bump2version",
            "specs": [
                [
                    "==",
                    "1.0.1"
                ]
            ]
        },
        {
            "name": "Click",
            "specs": [
                [
                    ">=",
                    "7.0"
                ],
                [
                    "<",
                    "8"
                ]
            ]
        },
        {
            "name": "coverage",
            "specs": [
                [
                    "==",
                    "4.5.4"
                ]
            ]
        },
        {
            "name": "Cython",
            "specs": [
                [
                    "==",
                    "0.29.23"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    "==",
                    "3.7.8"
                ]
            ]
        },
        {
            "name": "fuzzywuzzy",
            "specs": [
                [
                    ">=",
                    "0.18.0"
                ]
            ]
        },
        {
            "name": "GDAL",
            "specs": [
                [
                    "==",
                    "3.1.4"
                ]
            ]
        },
        {
            "name": "geofeather",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "geopandas",
            "specs": [
                [
                    "==",
                    "0.8.1"
                ]
            ]
        },
        {
            "name": "netCDF4",
            "specs": [
                [
                    "==",
                    "1.5.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.20.3"
                ]
            ]
        },
        {
            "name": "openpyxl",
            "specs": [
                [
                    "==",
                    "3.0.7"
                ]
            ]
        },
        {
            "name": "pip",
            "specs": [
                [
                    ">=",
                    "21.1"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "1.8.2"
                ]
            ]
        },
        {
            "name": "pyproj",
            "specs": [
                [
                    "==",
                    "2.6.1.post1"
                ]
            ]
        },
        {
            "name": "python-Levenshtein",
            "specs": [
                [
                    ">=",
                    "0.12.2"
                ]
            ]
        },
        {
            "name": "rasterio",
            "specs": [
                [
                    ">=",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "Rtree",
            "specs": [
                [
                    "==",
                    "0.8.3"
                ]
            ]
        },
        {
            "name": "Shapely",
            "specs": [
                [
                    "==",
                    "1.7.1"
                ]
            ]
        },
        {
            "name": "Sphinx",
            "specs": [
                [
                    "==",
                    "1.8.5"
                ]
            ]
        },
        {
            "name": "tox",
            "specs": [
                [
                    "==",
                    "3.14.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "<",
                    "5.0.0"
                ],
                [
                    ">=",
                    "4.41.1"
                ]
            ]
        },
        {
            "name": "twine",
            "specs": [
                [
                    "==",
                    "1.14.0"
                ]
            ]
        },
        {
            "name": "watchdog",
            "specs": [
                [
                    "==",
                    "0.9.0"
                ]
            ]
        },
        {
            "name": "wheel",
            "specs": [
                [
                    "==",
                    "0.33.6"
                ]
            ]
        },
        {
            "name": "xarray",
            "specs": [
                [
                    "==",
                    "0.16.1"
                ]
            ]
        },
        {
            "name": "xlrd",
            "specs": [
                [
                    "==",
                    "2.0.1"
                ]
            ]
        }
    ],
    "tox": true,
    "lcname": "mixmasta"
}
        
Elapsed time: 0.14659s