mlend


Namemlend JSON
Version 1.0.0.4 PyPI version JSON
download
home_pagehttps://MLEndDatasets.github.io
SummaryMLEnd Datasets
upload_time2024-11-17 14:21:06
maintainerNikesh Bajaj
docs_urlNone
authorJesús Requena Carrión and Nikesh Bajaj
requires_python>=3.5
licenseMIT
keywords mlenddatasets datasets machinelearning principlesofmachinelearning data ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MLEnd Datasets

### Links: **[Homepage](https://MLEndDatasets.github.io)** | **[Documentation](https://mlend.readthedocs.io/)** | **[Github](https://github.com/MLEndDatasets)**  |  **[PyPi - project](https://pypi.org/project/mlend/)** |     _ **Installation:** [pip install mlend](https://pypi.org/project/mlend/)
-----

-----

## Installation

**Requirement**:  numpy, matplotlib, scipy.stats, spkit

### with pip

```
pip install mlend
```

### update with pip

```
pip install mlend --upgrade
```


## Download data :  Spoken Numerals

```
import mlend
from mlend import download_spoken_numerals, spoken_numerals_load


datadir = download_spoken_numerals(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)

```

## Create Training and Testing Sets

```
TrainSet, TestSet, MAPs = spoken_numerals_load(datadir_main = datadir, train_test_split = 'Benchmark_B', verbose=1,encode_labels=True)

```

## Download data :  London Sounds


```
import mlend
from mlend import download_london_sounds, london_sounds_load


datadir = download_london_sounds(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)

```


## Download data :  Hums and Whistles


```
import mlend
from mlend import download_hums_whistles, hums_whistles_load


datadir = download_hums_whistles(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)

```


## Download data :  Yummy


```
import mlend
from mlend import download_yummy, yummy_load

subset = {}

datadir = download_yummy(save_to = '../MLEnd', subset = subset,verbose=1,overwrite=False)

```




# Contacts:
* **Jesús Requena Carrión**
* Queen Mary University of London

* **Nikesh Bajaj**
* Queen Mary University of London
* n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk

______________________________________

            

Raw data

            {
    "_id": null,
    "home_page": "https://MLEndDatasets.github.io",
    "name": "mlend",
    "maintainer": "Nikesh Bajaj",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "nikkeshbajaj@gmail.com",
    "keywords": "MLEndDatasets Datasets MachineLearning PrinciplesOfMachineLearning Data AI",
    "author": "Jes\u00fas Requena Carri\u00f3n and Nikesh Bajaj",
    "author_email": "nikkeshbajaj@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/55/80/da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa/mlend-1.0.0.4.tar.gz",
    "platform": "any",
    "description": "# MLEnd Datasets\n\n### Links: **[Homepage](https://MLEndDatasets.github.io)** | **[Documentation](https://mlend.readthedocs.io/)** | **[Github](https://github.com/MLEndDatasets)**  |  **[PyPi - project](https://pypi.org/project/mlend/)** |     _ **Installation:** [pip install mlend](https://pypi.org/project/mlend/)\n-----\n\n-----\n\n## Installation\n\n**Requirement**:  numpy, matplotlib, scipy.stats, spkit\n\n### with pip\n\n```\npip install mlend\n```\n\n### update with pip\n\n```\npip install mlend --upgrade\n```\n\n\n## Download data :  Spoken Numerals\n\n```\nimport mlend\nfrom mlend import download_spoken_numerals, spoken_numerals_load\n\n\ndatadir = download_spoken_numerals(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n## Create Training and Testing Sets\n\n```\nTrainSet, TestSet, MAPs = spoken_numerals_load(datadir_main = datadir, train_test_split = 'Benchmark_B', verbose=1,encode_labels=True)\n\n```\n\n## Download data :  London Sounds\n\n\n```\nimport mlend\nfrom mlend import download_london_sounds, london_sounds_load\n\n\ndatadir = download_london_sounds(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n\n## Download data :  Hums and Whistles\n\n\n```\nimport mlend\nfrom mlend import download_hums_whistles, hums_whistles_load\n\n\ndatadir = download_hums_whistles(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n\n## Download data :  Yummy\n\n\n```\nimport mlend\nfrom mlend import download_yummy, yummy_load\n\nsubset = {}\n\ndatadir = download_yummy(save_to = '../MLEnd', subset = subset,verbose=1,overwrite=False)\n\n```\n\n\n\n\n# Contacts:\n* **Jes\u00fas Requena Carri\u00f3n**\n* Queen Mary University of London\n\n* **Nikesh Bajaj**\n* Queen Mary University of London\n* n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk\n\n______________________________________\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "MLEnd Datasets",
    "version": "1.0.0.4",
    "project_urls": {
        "Documentation": "https://mlend.readthedocs.io/",
        "Download": "https://github.com/Nikeshbajaj/MLEnd/tarball/1.0.0.4",
        "Homepage": "https://MLEndDatasets.github.io",
        "Say Thanks!": "https://github.com/Nikeshbajaj",
        "Source": "https://github.com/Nikeshbajaj/MLEnd",
        "Tracker": "https://github.com/Nikeshbajaj/MLEnd/issues"
    },
    "split_keywords": [
        "mlenddatasets",
        "datasets",
        "machinelearning",
        "principlesofmachinelearning",
        "data",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6c4d07593803574e62f45ca2f951c8cfa3516a9dd4089796f48fbeaa04f0cc7",
                "md5": "78ff49e7a3744396f3225dc0cd14ac9c",
                "sha256": "4f86138c1566941993b8dd64b41bf8bd2778b7749e17ea913224ace36526d30f"
            },
            "downloads": -1,
            "filename": "mlend-1.0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "78ff49e7a3744396f3225dc0cd14ac9c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.5",
            "size": 12360,
            "upload_time": "2024-11-17T14:21:04",
            "upload_time_iso_8601": "2024-11-17T14:21:04.835606Z",
            "url": "https://files.pythonhosted.org/packages/d6/c4/d07593803574e62f45ca2f951c8cfa3516a9dd4089796f48fbeaa04f0cc7/mlend-1.0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5580da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa",
                "md5": "ac9d7bb632a4c5a589f5b068e59fd671",
                "sha256": "c9150ecc61507573d4a97b56bd0ef44dcaa03995ce73d44caf47d6d9e77cfaee"
            },
            "downloads": -1,
            "filename": "mlend-1.0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "ac9d7bb632a4c5a589f5b068e59fd671",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 13536,
            "upload_time": "2024-11-17T14:21:06",
            "upload_time_iso_8601": "2024-11-17T14:21:06.627406Z",
            "url": "https://files.pythonhosted.org/packages/55/80/da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa/mlend-1.0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 14:21:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Nikeshbajaj",
    "github_project": "MLEnd",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "mlend"
}
        
Elapsed time: 0.96803s