# MLEnd Datasets
### Links: **[Homepage](https://MLEndDatasets.github.io)** | **[Documentation](https://mlend.readthedocs.io/)** | **[Github](https://github.com/MLEndDatasets)** | **[PyPi - project](https://pypi.org/project/mlend/)** | _ **Installation:** [pip install mlend](https://pypi.org/project/mlend/)
-----
-----
## Installation
**Requirement**: numpy, matplotlib, scipy.stats, spkit
### with pip
```
pip install mlend
```
### update with pip
```
pip install mlend --upgrade
```
## Download data : Spoken Numerals
```
import mlend
from mlend import download_spoken_numerals, spoken_numerals_load
datadir = download_spoken_numerals(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)
```
## Create Training and Testing Sets
```
TrainSet, TestSet, MAPs = spoken_numerals_load(datadir_main = datadir, train_test_split = 'Benchmark_B', verbose=1,encode_labels=True)
```
## Download data : London Sounds
```
import mlend
from mlend import download_london_sounds, london_sounds_load
datadir = download_london_sounds(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)
```
## Download data : Hums and Whistles
```
import mlend
from mlend import download_hums_whistles, hums_whistles_load
datadir = download_hums_whistles(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)
```
## Download data : Yummy
```
import mlend
from mlend import download_yummy, yummy_load
subset = {}
datadir = download_yummy(save_to = '../MLEnd', subset = subset,verbose=1,overwrite=False)
```
# Contacts:
* **Jesús Requena Carrión**
* Queen Mary University of London
* **Nikesh Bajaj**
* Queen Mary University of London
* n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk
______________________________________
Raw data
{
"_id": null,
"home_page": "https://MLEndDatasets.github.io",
"name": "mlend",
"maintainer": "Nikesh Bajaj",
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": "nikkeshbajaj@gmail.com",
"keywords": "MLEndDatasets Datasets MachineLearning PrinciplesOfMachineLearning Data AI",
"author": "Jes\u00fas Requena Carri\u00f3n and Nikesh Bajaj",
"author_email": "nikkeshbajaj@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/55/80/da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa/mlend-1.0.0.4.tar.gz",
"platform": "any",
"description": "# MLEnd Datasets\n\n### Links: **[Homepage](https://MLEndDatasets.github.io)** | **[Documentation](https://mlend.readthedocs.io/)** | **[Github](https://github.com/MLEndDatasets)** | **[PyPi - project](https://pypi.org/project/mlend/)** | _ **Installation:** [pip install mlend](https://pypi.org/project/mlend/)\n-----\n\n-----\n\n## Installation\n\n**Requirement**: numpy, matplotlib, scipy.stats, spkit\n\n### with pip\n\n```\npip install mlend\n```\n\n### update with pip\n\n```\npip install mlend --upgrade\n```\n\n\n## Download data : Spoken Numerals\n\n```\nimport mlend\nfrom mlend import download_spoken_numerals, spoken_numerals_load\n\n\ndatadir = download_spoken_numerals(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n## Create Training and Testing Sets\n\n```\nTrainSet, TestSet, MAPs = spoken_numerals_load(datadir_main = datadir, train_test_split = 'Benchmark_B', verbose=1,encode_labels=True)\n\n```\n\n## Download data : London Sounds\n\n\n```\nimport mlend\nfrom mlend import download_london_sounds, london_sounds_load\n\n\ndatadir = download_london_sounds(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n\n## Download data : Hums and Whistles\n\n\n```\nimport mlend\nfrom mlend import download_hums_whistles, hums_whistles_load\n\n\ndatadir = download_hums_whistles(save_to = '../Data/MLEnd', subset = {},verbose=1,overwrite=False)\n\n```\n\n\n## Download data : Yummy\n\n\n```\nimport mlend\nfrom mlend import download_yummy, yummy_load\n\nsubset = {}\n\ndatadir = download_yummy(save_to = '../MLEnd', subset = subset,verbose=1,overwrite=False)\n\n```\n\n\n\n\n# Contacts:\n* **Jes\u00fas Requena Carri\u00f3n**\n* Queen Mary University of London\n\n* **Nikesh Bajaj**\n* Queen Mary University of London\n* n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk\n\n______________________________________\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "MLEnd Datasets",
"version": "1.0.0.4",
"project_urls": {
"Documentation": "https://mlend.readthedocs.io/",
"Download": "https://github.com/Nikeshbajaj/MLEnd/tarball/1.0.0.4",
"Homepage": "https://MLEndDatasets.github.io",
"Say Thanks!": "https://github.com/Nikeshbajaj",
"Source": "https://github.com/Nikeshbajaj/MLEnd",
"Tracker": "https://github.com/Nikeshbajaj/MLEnd/issues"
},
"split_keywords": [
"mlenddatasets",
"datasets",
"machinelearning",
"principlesofmachinelearning",
"data",
"ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d6c4d07593803574e62f45ca2f951c8cfa3516a9dd4089796f48fbeaa04f0cc7",
"md5": "78ff49e7a3744396f3225dc0cd14ac9c",
"sha256": "4f86138c1566941993b8dd64b41bf8bd2778b7749e17ea913224ace36526d30f"
},
"downloads": -1,
"filename": "mlend-1.0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "78ff49e7a3744396f3225dc0cd14ac9c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5",
"size": 12360,
"upload_time": "2024-11-17T14:21:04",
"upload_time_iso_8601": "2024-11-17T14:21:04.835606Z",
"url": "https://files.pythonhosted.org/packages/d6/c4/d07593803574e62f45ca2f951c8cfa3516a9dd4089796f48fbeaa04f0cc7/mlend-1.0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5580da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa",
"md5": "ac9d7bb632a4c5a589f5b068e59fd671",
"sha256": "c9150ecc61507573d4a97b56bd0ef44dcaa03995ce73d44caf47d6d9e77cfaee"
},
"downloads": -1,
"filename": "mlend-1.0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "ac9d7bb632a4c5a589f5b068e59fd671",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 13536,
"upload_time": "2024-11-17T14:21:06",
"upload_time_iso_8601": "2024-11-17T14:21:06.627406Z",
"url": "https://files.pythonhosted.org/packages/55/80/da1262ad50c013c2ed388d40b78db6b1041c37bd47fa35175aa64a2c0eaa/mlend-1.0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-17 14:21:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Nikeshbajaj",
"github_project": "MLEnd",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "mlend"
}