model-vram-calc


Namemodel-vram-calc JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryGPU memory calculator for Hugging Face models with different data types and parallelization strategies
upload_time2025-08-15 13:27:18
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords ai calculator gpu huggingface memory ml transformer vram
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Model VRAM Calculator

A Python CLI tool for estimating GPU memory requirements for Hugging Face models with different data types and parallelization strategies.

## Features

- 🔍 Automatically fetch model configurations from Hugging Face
- 📊 Support multiple data types: fp32, fp16/bf16, fp8, int8, int4, mxfp4, nvfp4
- 🎯 Memory estimation for different scenarios:
  - **Inference**: Model weights + KV cache overhead
  - **Training**: Including gradients and optimizer states (Adam)
  - **LoRA Fine-tuning**: Low-rank adaptation fine-tuning memory requirements
- ⚡ Calculate memory distribution across parallelization strategies:
  - Tensor Parallelism (TP): 1, 2, 4, 8
  - Pipeline Parallelism (PP): 1, 2, 4, 8
  - Expert Parallelism (EP)
  - Data Parallelism (DP)
  - Combined strategies (TP + PP)
- 🎮 GPU compatibility checks:
  - Common GPU type recommendations (RTX 4090, A100, H100, etc.)
  - Minimum GPU memory requirement calculations
- 📈 Professional table output using Rich library:
  - 🎨 Color coding and beautiful borders
  - 📊 Progress bars and status displays
  - 🚀 Modern CLI interface experience
- 🔧 Customizable parameters: LoRA rank, batch size, sequence length

## Installation

```bash
pip3 install -r requirements.txt
```

> Main dependencies: `requests` and `rich` (for beautiful tables and progress display)

## Usage

### Basic Usage

```bash
python3 vram_calculator.py microsoft/DialoGPT-medium
```

### Specify Data Type

```bash
python3 vram_calculator.py meta-llama/Llama-2-7b-hf --dtype bf16
```

### Custom Batch Size and Sequence Length

```bash
python3 vram_calculator.py mistralai/Mistral-7B-v0.1 --batch-size 4 --sequence-length 4096
```

### Show Detailed Parallelization Strategies and GPU Recommendations

```bash
python3 vram_calculator.py --show-detailed microsoft/DialoGPT-medium
```

### Custom LoRA Rank for Fine-tuning Memory Estimation

```bash
python3 vram_calculator.py --lora-rank 128 --show-detailed microsoft/DialoGPT-medium
```

### View Available Data Types and GPU Models

```bash
python3 vram_calculator.py --list-types
```

### Use Custom Configuration

```bash
# Use custom configuration directory
python3 vram_calculator.py --config-dir ./my_config microsoft/DialoGPT-medium
```

## Command Line Arguments

- `model_name`: Hugging Face model name (required)
- `--dtype`: Specify data type (optional, default: show all types)
- `--batch-size`: Batch size for activation memory estimation (default: 1)
- `--sequence-length`: Sequence length for activation memory estimation (default: 2048)
- `--lora-rank`: LoRA rank parameter for fine-tuning (default: 64)
- `--show-detailed`: Show detailed parallelization strategies and GPU recommendations
- `--config-dir`: Specify custom configuration directory
- `--list-types`: List all available data types and GPU models

## Configuration System

The tool uses separate JSON configuration files to manage data types and GPU specifications, allowing flexible user customization:

### Configuration File Structure

- **`data_types.json`** - Define data types and bytes per parameter
- **`gpu_types.json`** - Define GPU models and memory specifications  
- **`display_settings.json`** - Control display styles and behavior

### Adding Custom Data Types

Edit the `data_types.json` file:

```json
{
  "your_custom_format": {
    "bytes_per_param": 0.75,
    "description": "Your custom 6-bit format"
  }
}
```

### Adding Custom GPU Models

Edit the `gpu_types.json` file:

```json
{
  "name": "RTX 5090",
  "memory_gb": 32,
  "category": "consumer",
  "architecture": "Blackwell"
}
```

For detailed configuration instructions, please refer to: [CONFIG_GUIDE.md](CONFIG_GUIDE.md)

## Supported Data Types

| Data Type | Bytes per Parameter | Description |
|-----------|--------------------|-----------| 
| fp32      | 4                  | 32-bit floating point |
| fp16      | 2                  | 16-bit floating point |
| bf16      | 2                  | Brain Float 16 |
| fp8       | 1                  | 8-bit floating point |
| int8      | 1                  | 8-bit integer |
| int4      | 0.5                | 4-bit integer |
| mxfp4     | 0.5                | Microsoft FP4 |
| nvfp4     | 0.5                | NVIDIA FP4 |

## Parallelization Strategies

### Tensor Parallelism (TP)
Splits model weights by tensor dimensions across multiple GPUs.

### Pipeline Parallelism (PP)
Distributes different model layers to different GPUs.

### Expert Parallelism (EP)
For MoE (Mixture of Experts) models, distributes expert networks to different GPUs.

### Data Parallelism (DP)
Each GPU holds a complete model copy, only splitting data.

## Example Output

### Basic Output (Default Mode)

```
================================================================================
Model: microsoft/DialoGPT-medium
Architecture: gpt2
Parameters: 404,966,400
================================================================================

Memory Requirements by Data Type and Scenario:              
================================================================================
Data Type    Total Size   Inference    Training     LoRA        
(GB)         (GB)         (GB)         (Adam) (GB)  (GB)        
────────────────────────────────────────────────────────────────────────────────
FP32         1.51        1.81        7.84        1.84       
FP16         0.75        0.91        3.92        0.94       
BF16         0.75        0.91        3.92        0.94       
INT8         0.38        0.45        1.96        0.48       
INT4         0.19        0.23        0.98        0.26       
```

### Detailed Output (--show-detailed mode)

```
================================================================================
Model: microsoft/DialoGPT-medium
Architecture: gpt2
Parameters: 404,966,400
================================================================================

Memory Requirements by Data Type and Scenario:              
================================================================================
Data Type    Total Size   Inference    Training     LoRA        
(GB)         (GB)         (GB)         (Adam) (GB)  (GB)        
────────────────────────────────────────────────────────────────────────────────
FP32         1.51        1.81        7.84        1.84       
FP16         0.75        0.91        3.92        0.94       
BF16         0.75        0.91        3.92        0.94       
INT8         0.38        0.45        1.96        0.48       
INT4         0.19        0.23        0.98        0.26       

Parallelization Strategies (BF16 Inference):                
================================================================================
Strategy             TP   PP   EP   DP   Memory/GPU (GB) Min GPUs  
────────────────────────────────────────────────────────────────────────────────
Single GPU           1    1    1    1    0.91           4GB+      
Tensor Parallel      2    1    1    1    0.45           4GB+      
Tensor Parallel      4    1    1    1    0.23           4GB+      
Tensor Parallel      8    1    1    1    0.11           4GB+      
Pipeline Parallel    1    2    1    1    0.45           4GB+      
Pipeline Parallel    1    4    1    1    0.23           4GB+      
Pipeline Parallel    1    8    1    1    0.11           4GB+      
TP + PP              2    2    1    1    0.23           4GB+      
TP + PP              2    4    1    1    0.11           4GB+      
TP + PP              4    2    1    1    0.11           4GB+      
TP + PP              4    4    1    1    0.06           4GB+      

Recommendations:                                            
================================================================================
GPU Type        Memory     Inference    Training     LoRA        
────────────────────────────────────────────────────────────────────────────────
RTX 4090        24       GB ✓           ✓           ✓          
A100 40GB       40       GB ✓           ✓           ✓          
A100 80GB       80       GB ✓           ✓           ✓          
H100            80       GB ✓           ✓           ✓          

Minimum GPU Requirements:                                   
────────────────────────────────────────────────────────────────────────────────
Single GPU Inference: 0.9GB
Single GPU Training: 3.9GB
Single GPU LoRA: 0.9GB
```

## Calculation Formulas

### Inference Memory
```
Inference Memory = Model Weights × 1.2
```
Includes model weights and KV cache overhead.

### Training Memory (with Adam)
```
Training Memory = Model Weights × 4 × 1.3
```
- 4x factor: Model weights (1x) + Gradients (1x) + Adam optimizer states (2x)
- 1.3x factor: 30% additional overhead (activation caching, etc.)

### LoRA Fine-tuning Memory
```
LoRA Memory = (Model Weights + LoRA Parameter Overhead) × 1.2
```
LoRA parameter overhead calculated based on rank and target module ratio.

## Notes

1. **Activation Memory**: Current simplified estimation may be significantly reduced in practice due to optimization strategies (such as gradient checkpointing)
2. **Parallelization Efficiency**: Assumes ideal conditions, actual may vary slightly due to communication overhead
3. **LoRA Estimation**: Based on typical configurations (25% target modules), actual may vary depending on specific implementation
4. **Mixed Data Types**: Some cases may use mixed precision, actual memory between different data types
5. **Model Architecture Differences**: Different architectures (such as MoE) may have special memory distribution patterns

## Supported Model Architectures

Currently mainly supports Transformer architecture models, including but not limited to:
- GPT series
- LLaMA series
- Mistral series
- BERT series
- T5 series

## Contributing

Welcome to submit Issues and Pull Requests to improve this tool!
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "model-vram-calc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ai, calculator, gpu, huggingface, memory, ml, transformer, vram",
    "author": null,
    "author_email": "HF VRAM Calculator Contributors <hf-vram-calc@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/a6/59/54f5eb2ba5e71ec6d13fcdfa0da2b67abb88630712c5d4456464615a78bf/model_vram_calc-1.0.0.tar.gz",
    "platform": null,
    "description": "# Model VRAM Calculator\n\nA Python CLI tool for estimating GPU memory requirements for Hugging Face models with different data types and parallelization strategies.\n\n## Features\n\n- \ud83d\udd0d Automatically fetch model configurations from Hugging Face\n- \ud83d\udcca Support multiple data types: fp32, fp16/bf16, fp8, int8, int4, mxfp4, nvfp4\n- \ud83c\udfaf Memory estimation for different scenarios:\n  - **Inference**: Model weights + KV cache overhead\n  - **Training**: Including gradients and optimizer states (Adam)\n  - **LoRA Fine-tuning**: Low-rank adaptation fine-tuning memory requirements\n- \u26a1 Calculate memory distribution across parallelization strategies:\n  - Tensor Parallelism (TP): 1, 2, 4, 8\n  - Pipeline Parallelism (PP): 1, 2, 4, 8\n  - Expert Parallelism (EP)\n  - Data Parallelism (DP)\n  - Combined strategies (TP + PP)\n- \ud83c\udfae GPU compatibility checks:\n  - Common GPU type recommendations (RTX 4090, A100, H100, etc.)\n  - Minimum GPU memory requirement calculations\n- \ud83d\udcc8 Professional table output using Rich library:\n  - \ud83c\udfa8 Color coding and beautiful borders\n  - \ud83d\udcca Progress bars and status displays\n  - \ud83d\ude80 Modern CLI interface experience\n- \ud83d\udd27 Customizable parameters: LoRA rank, batch size, sequence length\n\n## Installation\n\n```bash\npip3 install -r requirements.txt\n```\n\n> Main dependencies: `requests` and `rich` (for beautiful tables and progress display)\n\n## Usage\n\n### Basic Usage\n\n```bash\npython3 vram_calculator.py microsoft/DialoGPT-medium\n```\n\n### Specify Data Type\n\n```bash\npython3 vram_calculator.py meta-llama/Llama-2-7b-hf --dtype bf16\n```\n\n### Custom Batch Size and Sequence Length\n\n```bash\npython3 vram_calculator.py mistralai/Mistral-7B-v0.1 --batch-size 4 --sequence-length 4096\n```\n\n### Show Detailed Parallelization Strategies and GPU Recommendations\n\n```bash\npython3 vram_calculator.py --show-detailed microsoft/DialoGPT-medium\n```\n\n### Custom LoRA Rank for Fine-tuning Memory Estimation\n\n```bash\npython3 vram_calculator.py --lora-rank 128 --show-detailed microsoft/DialoGPT-medium\n```\n\n### View Available Data Types and GPU Models\n\n```bash\npython3 vram_calculator.py --list-types\n```\n\n### Use Custom Configuration\n\n```bash\n# Use custom configuration directory\npython3 vram_calculator.py --config-dir ./my_config microsoft/DialoGPT-medium\n```\n\n## Command Line Arguments\n\n- `model_name`: Hugging Face model name (required)\n- `--dtype`: Specify data type (optional, default: show all types)\n- `--batch-size`: Batch size for activation memory estimation (default: 1)\n- `--sequence-length`: Sequence length for activation memory estimation (default: 2048)\n- `--lora-rank`: LoRA rank parameter for fine-tuning (default: 64)\n- `--show-detailed`: Show detailed parallelization strategies and GPU recommendations\n- `--config-dir`: Specify custom configuration directory\n- `--list-types`: List all available data types and GPU models\n\n## Configuration System\n\nThe tool uses separate JSON configuration files to manage data types and GPU specifications, allowing flexible user customization:\n\n### Configuration File Structure\n\n- **`data_types.json`** - Define data types and bytes per parameter\n- **`gpu_types.json`** - Define GPU models and memory specifications  \n- **`display_settings.json`** - Control display styles and behavior\n\n### Adding Custom Data Types\n\nEdit the `data_types.json` file:\n\n```json\n{\n  \"your_custom_format\": {\n    \"bytes_per_param\": 0.75,\n    \"description\": \"Your custom 6-bit format\"\n  }\n}\n```\n\n### Adding Custom GPU Models\n\nEdit the `gpu_types.json` file:\n\n```json\n{\n  \"name\": \"RTX 5090\",\n  \"memory_gb\": 32,\n  \"category\": \"consumer\",\n  \"architecture\": \"Blackwell\"\n}\n```\n\nFor detailed configuration instructions, please refer to: [CONFIG_GUIDE.md](CONFIG_GUIDE.md)\n\n## Supported Data Types\n\n| Data Type | Bytes per Parameter | Description |\n|-----------|--------------------|-----------| \n| fp32      | 4                  | 32-bit floating point |\n| fp16      | 2                  | 16-bit floating point |\n| bf16      | 2                  | Brain Float 16 |\n| fp8       | 1                  | 8-bit floating point |\n| int8      | 1                  | 8-bit integer |\n| int4      | 0.5                | 4-bit integer |\n| mxfp4     | 0.5                | Microsoft FP4 |\n| nvfp4     | 0.5                | NVIDIA FP4 |\n\n## Parallelization Strategies\n\n### Tensor Parallelism (TP)\nSplits model weights by tensor dimensions across multiple GPUs.\n\n### Pipeline Parallelism (PP)\nDistributes different model layers to different GPUs.\n\n### Expert Parallelism (EP)\nFor MoE (Mixture of Experts) models, distributes expert networks to different GPUs.\n\n### Data Parallelism (DP)\nEach GPU holds a complete model copy, only splitting data.\n\n## Example Output\n\n### Basic Output (Default Mode)\n\n```\n================================================================================\nModel: microsoft/DialoGPT-medium\nArchitecture: gpt2\nParameters: 404,966,400\n================================================================================\n\nMemory Requirements by Data Type and Scenario:              \n================================================================================\nData Type    Total Size   Inference    Training     LoRA        \n(GB)         (GB)         (GB)         (Adam) (GB)  (GB)        \n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\nFP32         1.51        1.81        7.84        1.84       \nFP16         0.75        0.91        3.92        0.94       \nBF16         0.75        0.91        3.92        0.94       \nINT8         0.38        0.45        1.96        0.48       \nINT4         0.19        0.23        0.98        0.26       \n```\n\n### Detailed Output (--show-detailed mode)\n\n```\n================================================================================\nModel: microsoft/DialoGPT-medium\nArchitecture: gpt2\nParameters: 404,966,400\n================================================================================\n\nMemory Requirements by Data Type and Scenario:              \n================================================================================\nData Type    Total Size   Inference    Training     LoRA        \n(GB)         (GB)         (GB)         (Adam) (GB)  (GB)        \n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\nFP32         1.51        1.81        7.84        1.84       \nFP16         0.75        0.91        3.92        0.94       \nBF16         0.75        0.91        3.92        0.94       \nINT8         0.38        0.45        1.96        0.48       \nINT4         0.19        0.23        0.98        0.26       \n\nParallelization Strategies (BF16 Inference):                \n================================================================================\nStrategy             TP   PP   EP   DP   Memory/GPU (GB) Min GPUs  \n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\nSingle GPU           1    1    1    1    0.91           4GB+      \nTensor Parallel      2    1    1    1    0.45           4GB+      \nTensor Parallel      4    1    1    1    0.23           4GB+      \nTensor Parallel      8    1    1    1    0.11           4GB+      \nPipeline Parallel    1    2    1    1    0.45           4GB+      \nPipeline Parallel    1    4    1    1    0.23           4GB+      \nPipeline Parallel    1    8    1    1    0.11           4GB+      \nTP + PP              2    2    1    1    0.23           4GB+      \nTP + PP              2    4    1    1    0.11           4GB+      \nTP + PP              4    2    1    1    0.11           4GB+      \nTP + PP              4    4    1    1    0.06           4GB+      \n\nRecommendations:                                            \n================================================================================\nGPU Type        Memory     Inference    Training     LoRA        \n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\nRTX 4090        24       GB \u2713           \u2713           \u2713          \nA100 40GB       40       GB \u2713           \u2713           \u2713          \nA100 80GB       80       GB \u2713           \u2713           \u2713          \nH100            80       GB \u2713           \u2713           \u2713          \n\nMinimum GPU Requirements:                                   \n\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\nSingle GPU Inference: 0.9GB\nSingle GPU Training: 3.9GB\nSingle GPU LoRA: 0.9GB\n```\n\n## Calculation Formulas\n\n### Inference Memory\n```\nInference Memory = Model Weights \u00d7 1.2\n```\nIncludes model weights and KV cache overhead.\n\n### Training Memory (with Adam)\n```\nTraining Memory = Model Weights \u00d7 4 \u00d7 1.3\n```\n- 4x factor: Model weights (1x) + Gradients (1x) + Adam optimizer states (2x)\n- 1.3x factor: 30% additional overhead (activation caching, etc.)\n\n### LoRA Fine-tuning Memory\n```\nLoRA Memory = (Model Weights + LoRA Parameter Overhead) \u00d7 1.2\n```\nLoRA parameter overhead calculated based on rank and target module ratio.\n\n## Notes\n\n1. **Activation Memory**: Current simplified estimation may be significantly reduced in practice due to optimization strategies (such as gradient checkpointing)\n2. **Parallelization Efficiency**: Assumes ideal conditions, actual may vary slightly due to communication overhead\n3. **LoRA Estimation**: Based on typical configurations (25% target modules), actual may vary depending on specific implementation\n4. **Mixed Data Types**: Some cases may use mixed precision, actual memory between different data types\n5. **Model Architecture Differences**: Different architectures (such as MoE) may have special memory distribution patterns\n\n## Supported Model Architectures\n\nCurrently mainly supports Transformer architecture models, including but not limited to:\n- GPT series\n- LLaMA series\n- Mistral series\n- BERT series\n- T5 series\n\n## Contributing\n\nWelcome to submit Issues and Pull Requests to improve this tool!",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "GPU memory calculator for Hugging Face models with different data types and parallelization strategies",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/example/hf-vram-calc",
        "Issues": "https://github.com/example/hf-vram-calc/issues",
        "Repository": "https://github.com/example/hf-vram-calc"
    },
    "split_keywords": [
        "ai",
        " calculator",
        " gpu",
        " huggingface",
        " memory",
        " ml",
        " transformer",
        " vram"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6cdc18db49c42849017fc3efd8ad5cd01be10a71c087f2c579a99698d600bd23",
                "md5": "32dcb70c213c9ed149228ccf65b3b556",
                "sha256": "4b7dae838e7d4d11a1f1d89dac55e7431be3e5582ca684f42985312ae406136c"
            },
            "downloads": -1,
            "filename": "model_vram_calc-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "32dcb70c213c9ed149228ccf65b3b556",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 16528,
            "upload_time": "2025-08-15T13:27:16",
            "upload_time_iso_8601": "2025-08-15T13:27:16.960019Z",
            "url": "https://files.pythonhosted.org/packages/6c/dc/18db49c42849017fc3efd8ad5cd01be10a71c087f2c579a99698d600bd23/model_vram_calc-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a65954f5eb2ba5e71ec6d13fcdfa0da2b67abb88630712c5d4456464615a78bf",
                "md5": "9ab40291baed1385de89eea3b4c2753c",
                "sha256": "bc04eba604d62f27b5c9c05070187cd079cf943a4f2d0149a960fab7739941af"
            },
            "downloads": -1,
            "filename": "model_vram_calc-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9ab40291baed1385de89eea3b4c2753c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16261,
            "upload_time": "2025-08-15T13:27:18",
            "upload_time_iso_8601": "2025-08-15T13:27:18.887390Z",
            "url": "https://files.pythonhosted.org/packages/a6/59/54f5eb2ba5e71ec6d13fcdfa0da2b67abb88630712c5d4456464615a78bf/model_vram_calc-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-15 13:27:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "example",
    "github_project": "hf-vram-calc",
    "github_not_found": true,
    "lcname": "model-vram-calc"
}
        
Elapsed time: 1.91705s