Usage Sample
''''''''''''
.. code:: python
from model_wrapper import SplitClassifyModelWrapper
classes = ['class1', 'class2', 'class3'...]
X = [[...], [...],]
y = [0, 0, 1, 2, 1...]
model = ...
wrapper = SplitClassifyModelWrapper(model, classes=classes)
wrapper.train(X, y, val_size=0.2)
X_test = [[...], [...],]
y_test = [0, 1, 1, 2, 1...]
result = wrapper.evaluate(X_test, y_test)
# 0.953125
result = wrapper.predict(X_test)
# [0, 1]
result = wrapper.predict_classes(X_test)
# ['class1', 'class2']
result = wrapper.predict_proba(X_test)
# ([0, 1], array([0.99439645, 0.99190724], dtype=float32))
result = wrapper.predict_classes_proba(X_test)
# (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))
Raw data
{
"_id": null,
"home_page": "https://gitee.com/summry/model-wrapper",
"name": "model-wrapper",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "Pytorch, Training, AI, Machine learning, Deep learning, torch",
"author": "summy",
"author_email": "fkfkfk2024@2925.com",
"download_url": "https://files.pythonhosted.org/packages/b6/d1/985c06f53335a155d98d27e92899099d72a95975128d5a54e2be6f933af0/model-wrapper-1.0.5.tar.gz",
"platform": null,
"description": "Usage Sample\n''''''''''''\n\n.. code:: python\n\n from model_wrapper import SplitClassifyModelWrapper\n\n classes = ['class1', 'class2', 'class3'...]\n X = [[...], [...],]\n y = [0, 0, 1, 2, 1...]\n\n model = ...\n wrapper = SplitClassifyModelWrapper(model, classes=classes)\n wrapper.train(X, y, val_size=0.2)\n\n X_test = [[...], [...],]\n y_test = [0, 1, 1, 2, 1...]\n result = wrapper.evaluate(X_test, y_test)\n # 0.953125\n\n result = wrapper.predict(X_test)\n # [0, 1]\n\n result = wrapper.predict_classes(X_test)\n # ['class1', 'class2']\n\n result = wrapper.predict_proba(X_test)\n # ([0, 1], array([0.99439645, 0.99190724], dtype=float32))\n\n result = wrapper.predict_classes_proba(X_test)\n # (['class1', 'class2'], array([0.99439645, 0.99190724], dtype=float32))\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Model wrapper for Pytorch, which can training, predict, evaluate, etc.",
"version": "1.0.5",
"project_urls": {
"Homepage": "https://gitee.com/summry/model-wrapper"
},
"split_keywords": [
"pytorch",
" training",
" ai",
" machine learning",
" deep learning",
" torch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b6d1985c06f53335a155d98d27e92899099d72a95975128d5a54e2be6f933af0",
"md5": "effb293193b81e040e4b44ba2acd437c",
"sha256": "6aa830d191a4bc64745b0e3881af28497be1e76bc0c4ffa27bd45d9896c93477"
},
"downloads": -1,
"filename": "model-wrapper-1.0.5.tar.gz",
"has_sig": false,
"md5_digest": "effb293193b81e040e4b44ba2acd437c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 23020,
"upload_time": "2025-05-24T06:48:36",
"upload_time_iso_8601": "2025-05-24T06:48:36.736744Z",
"url": "https://files.pythonhosted.org/packages/b6/d1/985c06f53335a155d98d27e92899099d72a95975128d5a54e2be6f933af0/model-wrapper-1.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-05-24 06:48:36",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "model-wrapper"
}