momo-morphological-modeling


Namemomo-morphological-modeling JSON
Version 1.3.0 PyPI version JSON
download
home_pagehttps://github.com/danylevych/MoMo
SummaryMoMo is a module that does Morphological Modeling
upload_time2025-02-01 12:55:17
maintainerNone
docs_urlNone
authorOleh Danylevych
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements contourpy cycler fonttools kiwisolver matplotlib numpy packaging pandas pillow pyparsing python-dateutil pytz six tzdata
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Guide

- [Installation](#installation)
- [Modules](#modules)
    - [model](#model)
    - [prototype](#prototype)
    - [system_models](#system_models)
- [Author](#author)


## Installation

To install the package, run the following command:

```bash
pip install momo-morphological-modeling
```

## Modules

The package contains the following modules:

- `model`: Contains the main classes for the morphological modeling `MoMoModel`.
- `prototype`: Contains the classes for the prototype of morphological modeling `Prototype`.
- `system_models`: Contains the classes for the system models `SystemModel` and `MultySystemModel`.

---

### model

The `model` module contains the main classes for the morphological modeling. The main class is `MoMoModel` which is used to create a morphological model and to perform the morphological analysis.

### MoMoModel

The `MoMoModel` class represents a **Multi-Object Multi-System Model** designed to manage multiple system models and a prototype for similarity calculations. It integrates the `Prototype` and `MultiSystemModel` classes, enabling users to perform operations on system models and calculate similarity measures between them.

#### Key Features
- Supports initialization with multiple system models and an optional prototype.
- Automatically generates a prototype based on the system models if not provided.
- Allows for similarity measure calculations between the prototype and combinations of system models.
- Built-in integration with `Prototype` and `MultiSystemModel`.

---

##### Initialization Parameters

| Parameter       | Type                           | Description                                                                                  |
|-----------------|--------------------------------|----------------------------------------------------------------------------------------------|
| `system_models` | `MultiSystemModel`, `list`, `tuple`, `set` | The system models used in the `MoMoModel`.                                                  |
| `prototype`     | `Prototype`, `None` (optional) | The prototype object to compare with system models. Defaults to `None`.                     |

---

##### Methods Overview

| Method                                | Description                                                                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------|
| `get_prototype()`                     | Returns the current prototype.                                                              |
| `set_prototype(prototype)`            | Sets a new prototype.                                                                       |
| `prototype_` (property)                | Gets or sets the prototype.                                                                 |
| `get_system_models()`                 | Returns the current system models.                                                          |
| `set_system_models(system_models)`    | Sets new system models and updates the prototype accordingly.                                |
| `system_models_` (property)            | Gets or sets the system models.                                                             |
| `get_similarity_measures()`           | Calculates similarity measures between the prototype and all combinations of system models.  |
| `__str__()`                           | Returns a string representation of the `MoMoModel` object, including the prototype and system models. |

---

##### Example Usage

```python
from momo.model import MoMoModel
from momo.system_models.system_models import MultiSystemModel, SystemModel


# Create individual system models
dbms = SystemModel(
    name="DBMS",
    data=[
        [1, 0, 1],  # Security
        [1, 1, 0],  # Performance
        [0, 1, 1],  # Speed
    ],
    features=["Security", "Performance", "Speed"],
    alternatives=["MySQL", "PostgreSQL", "MongoDB"]
)

connector = SystemModel(
    name="Connector",
    data=[
        [1, 0],  # Flexibility
        [1, 1],  # Cost
    ],
    features=["Flexibility", "Cost"],
    alternatives=["Copper", "Aluminum"]
)

# Initialize a MultiSystemModel
multi_system = MultiSystemModel([dbms, connector])

# Initialize a MoMoModel
momo_model = MoMoModel(system_models=multi_system)

# Access the prototype
print("Prototype:")
print(momo_model.prototype)

# Calculate similarity measures
similarity_measures = momo_model.get_similarity_measures()
print("\nSimilarity Measures:")
for combination, measure in similarity_measures.items():
    print(f"{combination}: {measure}")

# String representation
print("\nMoMoModel:")
print(momo_model)
```

**Output:**
```
Prototype:
DBMS       Security       0
           Performance    0
           Speed          0
Connector  Flexibility    0
           Cost           0
dtype: int64

Similarity Measures:
('MySQL', 'Copper'): 0.5
('MySQL', 'Aluminum'): 1.3333333333333333
('PostgreSQL', 'Copper'): 0.5
('PostgreSQL', 'Aluminum'): 1.3333333333333333
('MongoDB', 'Copper'): 0.5
('MongoDB', 'Aluminum'): 1.3333333333333333

MoMoModel:
Prototype:
DBMS       Security       0
           Performance    0
           Speed          0
Connector  Flexibility    0
           Cost           0
dtype: int64

System Models:
                       (MySQL, Copper)  (MySQL, Aluminum)  (PostgreSQL, Copper)  (PostgreSQL, Aluminum)  (MongoDB, Copper)  (MongoDB, Aluminum)
DBMS      Security                   1                  1                     0                       0                  1                    1
          Performance                1                  1                     1                       1                  0                    0
          Speed                      0                  0                     1                       1                  1                    1
Connector Flexibility                1                  0                     1                       0                  1                    0
          Cost                       1                  1                     1                       1                  1                    1
```







---

### prototype

The `prototype` module contains the `Prototype` class, which is a subclass of `pandas.Series`. It is designed to store and manipulate hierarchical data using features and alternatives.

### Prototype

The `Prototype` class extends the functionality of `pandas.Series` by allowing hierarchical data representation with support for setting values via dictionaries or lists. **And its represnt the prototype of the morphological model.**

##### Key Features
- Directly inherits all functionality from `pandas.Series`.
- Supports setting values using hierarchical dictionaries or lists.
- Maintains compatibility with standard pandas operations.

---

##### Initialization Parameters

| Parameter      | Type                       | Description                                                                 |
|----------------|----------------------------|-----------------------------------------------------------------------------|
| `data`         | `array-like`, `Iterable`, `dict`, `scalar` | The data to be stored in the `Prototype`.                                  |
| `index`        | `array-like` or `Index`    | The index labels for the data.                                             |

---

##### Methods Overview

| Method                            | Description                                                                                  |
|-----------------------------------|----------------------------------------------------------------------------------------------|
| `set_marks(marks_list)`           | Sets values in the `Prototype` using a dictionary or list.                                   |
| `_set_marks_dict(marks_dict)`     | Sets values in the `Prototype` from a dictionary of hierarchical data.                       |
| `_set_marks_list(marks_list)`     | Sets values in the `Prototype` from a list.                                                  |

---

##### Example Usage

```python
from momo.prototype import Prototype


# Initialize a prototype with hierarchical data
data = [0, 0, 0, 1]
index = [("System1", "Feature1"), ("System1", "Feature2"), ("System2", "Feature3"), ("System2", "Feature4")]

prototype = Prototype(data=data, index=index)

print("Initial Prototype:")
print(prototype)

# Set marks using a dictionary
prototype.set_marks({
    "System1": {"Feature1": 1, "Feature2": 2},
    "System2": {"Feature3": 3, "Feature4": 4}
})

print("\nPrototype after setting marks (dict):")
print(prototype)

# Set marks using a list
prototype.set_marks([10, 20, 30, 40])

print("\nPrototype after setting marks (list):")
print(prototype)
```

**Output:**
```
Initial Prototype:
(System1, Feature1)    0
(System1, Feature2)    0
(System2, Feature3)    0
(System2, Feature4)    1
dtype: int64

Prototype after setting marks (dict):
(System1, Feature1)    1
(System1, Feature2)    2
(System2, Feature3)    3
(System2, Feature4)    4
dtype: int64

Prototype after setting marks (list):
(System1, Feature1)    10
(System1, Feature2)    20
(System2, Feature3)    30
(System2, Feature4)    40
dtype: int64
```


---

### system_models

The `system_models` module contains the classes for the system models. The main classes are `SystemModel` and `MultySystemModel` which are used to create the system models.

#### `SystemModel`

The `SystemModel` class is a core component designed to represent and manipulate system models. It allows you to manage a structured representation of features and alternatives, supporting data storage, validation, and various manipulations.

##### Key Features
- Manage relationships between features and alternatives.
- Add, remove, and retrieve features and alternatives.
- Validate the consistency of data, features, and alternatives.
- Built-in support for `pandas.DataFrame` for structured data handling.

---

##### Initialization Parameters

| Parameter      | Type         | Description                                                                                       |
|----------------|--------------|---------------------------------------------------------------------------------------------------|
| `name`         | `str`        | The name of the system model.       |
| `data`         | `list`, `None` | The data matrix (rows: features, columns: alternatives) to initialize the system model. |
| `features`     | `list`, `None` | The list of feature names.  |
| `alternatives` | `list`, `None` | The list of alternative names.|

---

##### Methods Overview

| Method                     | Description                                                                                  |
|----------------------------|----------------------------------------------------------------------------------------------|
| `add_feature(feature_name, alternatives)` | Adds a new feature to the system model with its alternatives.          |
| `add_alternative(alternative_name, features)` | Adds a new alternative to the system model with its features. |
| `remove_feature(feature_name)` | Removes a feature from the system model.                                     |
| `remove_alternative(alternative_name)` | Removes an alternative from the system model.                        |
| `get_features()`           | Returns a tuple of all features in the system model.                                           |
| `get_alternatives()`       | Returns a tuple of all alternatives in the system model.                                       |
| `features` (property)      | Returns the list of feature names as a pandas DataFrame index.                                 |
| `alternatives` (property)  | Returns the list of alternative names as a pandas DataFrame column index.                      |
| `loc` (property)           | Provides access to pandas DataFrame `.loc` for advanced slicing and indexing.                 |
| `__getitem__(key)`         | Retrieves a value from the underlying data using a key (row/column-based indexing).            |
| `__setitem__(key, value)`  | Sets a value in the underlying data using a key.                                               |
| `__str__()`                | Returns a string representation of the system model, including its name and the data matrix.   |

---

##### Example Usage

```python
from momo.system_models.system_models import SystemModel

# Initialize a system model
model = SystemModel(
    name="DBMS",
    data=[
        [1, 0, 1],  # Security
        [1, 1, 0],  # Performance
        [0, 1, 1],  # Speed
    ],
    features=["Security", "Performance", "Speed"],
    alternatives=["MySQL", "PostgreSQL", "MongoDB"]
)

# Add a new feature
model.add_feature("Reliability", [1, 1, 1])

# Add a new alternative
model.add_alternative("SQLite", {"Security": 1, "Performance": 0, "Speed": 1, "Reliability": 1})

# Access features and alternatives
print("Features:", model.get_features())
print("Alternatives:", model.get_alternatives())
print()

# Remove a feature
model.remove_feature("Speed")

# String representation of the model
print(model)
```

**Output:**
```
Features: ('Security', 'Performance', 'Speed', 'Reliability')
Alternatives: ('MySQL', 'PostgreSQL', 'MongoDB', 'SQLite')

"DBMS"
             MySQL  PostgreSQL  MongoDB  SQLite
Security         1           0        1       1
Performance      1           1        0       0
Reliability      1           1        1       1
```

---

#### `MultiSystemModel`

The `MultiSystemModel` class is designed to represent and manipulate multiple system models. It supports operations like adding, removing, and combining data from multiple `SystemModel` instances into a unified structure.

##### Key Features
- Combine multiple system models into a unified structure.
- Add, remove, and retrieve system models by name.
- Generate combinations of alternatives across all systems.
- Retrieve features and alternatives for all systems collectively.
- Built-in support for `pandas.DataFrame` for data representation.

---

##### Initialization Parameters

| Parameter          | Type                   | Description                                                                 |
|--------------------|------------------------|-----------------------------------------------------------------------------|
| `system_models`    | `list`, `tuple`, `set`, `None` | The list, tuple, or set of `SystemModel` instances to initialize the multi-system model. |

---

##### Methods Overview

| Method                               | Description                                                                                  |
|--------------------------------------|----------------------------------------------------------------------------------------------|
| `add_system(system_model)`           | Adds a new system model to the multi-system model.                                           |
| `add_systems(system_models)`         | Adds multiple system models to the multi-system model.                                       |
| `remove_system(system_name)`         | Removes a system model by name.                                                             |
| `get_system_names()`                 | Returns a tuple of all system model names in the multi-system model.                        |
| `get_all_combinations()`             | Generates all combinations of alternatives across all system models and returns a DataFrame. |
| `get_features_related_to_system()`   | Returns a tuple of features associated with each system in the multi-system model.           |
| `get_all_features()`                 | Returns a tuple of all features across all systems in the multi-system model.                |
| `get_prototype()`                    | Creates and returns a `Prototype` instance based on the features of all system models.       |
| `__str__()`                          | Returns a string representation of the multi-system model.                                   |

---

##### Example Usage

```python
from momo.system_models.system_models import SystemModel, MultiSystemModel

# Create individual system models
dbms = SystemModel(
    name="DBMS",
    data=[
        [1, 0, 1],  # Security
        [1, 1, 0],  # Performance
        [0, 1, 1],  # Speed
    ],
    features=["Security", "Performance", "Speed"],
    alternatives=["MySQL", "PostgreSQL", "MongoDB"]
)

connector = SystemModel(
    name="Connector",
    data=[
        [1, 0],  # Flexibility
        [1, 1],  # Cost
    ],
    features=["Flexibility", "Cost"],
    alternatives=["Copper", "Aluminum"]
)

# Initialize a multi-system model
multi_system = MultiSystemModel([dbms, connector])

# Add a new system model
multi_system.add_system(
    SystemModel(
        name="Cache",
        data=[
            [1, 1],  # Caching Speed
            [0, 1],  # Cost Efficiency
        ],
        features=["Caching Speed", "Cost Efficiency"],
        alternatives=["Redis", "Memcached"]
    )
)

# Retrieve system names
print("System Names:", multi_system.get_system_names())

# Retrieve all combinations of alternatives across all systems
combinations = multi_system.get_all_combinations()
print("\nAll Combinations of Alternatives:")
print(combinations)

# Retrieve features related to each system
related_features = multi_system.get_features_related_to_system()
print("\nRelated Features:")
print(related_features)

# Get the prototype based on the multi-system model
prototype = multi_system.get_prototype()
print("\nPrototype:")
print(prototype)
```


**Output:**
```
System Names: ('DBMS', 'Connector', 'Cache')

All Combinations of Alternatives:
                           (MySQL, Copper, Redis)  (MySQL, Copper, Memcached)  (MySQL, Aluminum, Redis)  ...  (MongoDB, Copper, Memcached)  (MongoDB, Aluminum, Redis)  (MongoDB, Aluminum, Memcached)
DBMS      Security                              1                           1                         1  ...                             1                           1                               1
          Performance                           1                           1                         1  ...                             0                           0                               0
          Speed                                 0                           0                         0  ...                             1                           1                               1
Connector Flexibility                           1                           1                         0  ...                             1                           0                               0
          Cost                                  1                           1                         1  ...                             1                           1                               1
Cache     Caching Speed                         1                           1                         1  ...                             1                           1                               1
          Cost Efficiency                       0                           1                         0  ...                             1                           0                               1

[7 rows x 12 columns]

Related Features:
(('DBMS', 'Security'), ('DBMS', 'Performance'), ('DBMS', 'Speed'), ('Connector', 'Flexibility'), ('Connector', 'Cost'), ('Cache', 'Caching Speed'), ('Cache', 'Cost Efficiency'))

Prototype:
DBMS       Security           0
           Performance        0
           Speed              0
Connector  Flexibility        0
           Cost               0
Cache      Caching Speed      0
           Cost Efficiency    0
dtype: int64
```


---

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/danylevych/MoMo",
    "name": "momo-morphological-modeling",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Oleh Danylevych",
    "author_email": "danylevych123@email.com",
    "download_url": "https://files.pythonhosted.org/packages/30/82/0d80f6cb4698428f78bfb293665fad6f7667563d2588af0f5767a2021506/momo_morphological_modeling-1.3.0.tar.gz",
    "platform": null,
    "description": "# Guide\n\n- [Installation](#installation)\n- [Modules](#modules)\n    - [model](#model)\n    - [prototype](#prototype)\n    - [system_models](#system_models)\n- [Author](#author)\n\n\n## Installation\n\nTo install the package, run the following command:\n\n```bash\npip install momo-morphological-modeling\n```\n\n## Modules\n\nThe package contains the following modules:\n\n- `model`: Contains the main classes for the morphological modeling `MoMoModel`.\n- `prototype`: Contains the classes for the prototype of morphological modeling `Prototype`.\n- `system_models`: Contains the classes for the system models `SystemModel` and `MultySystemModel`.\n\n---\n\n### model\n\nThe `model` module contains the main classes for the morphological modeling. The main class is `MoMoModel` which is used to create a morphological model and to perform the morphological analysis.\n\n### MoMoModel\n\nThe `MoMoModel` class represents a **Multi-Object Multi-System Model** designed to manage multiple system models and a prototype for similarity calculations. It integrates the `Prototype` and `MultiSystemModel` classes, enabling users to perform operations on system models and calculate similarity measures between them.\n\n#### Key Features\n- Supports initialization with multiple system models and an optional prototype.\n- Automatically generates a prototype based on the system models if not provided.\n- Allows for similarity measure calculations between the prototype and combinations of system models.\n- Built-in integration with `Prototype` and `MultiSystemModel`.\n\n---\n\n##### Initialization Parameters\n\n| Parameter       | Type                           | Description                                                                                  |\n|-----------------|--------------------------------|----------------------------------------------------------------------------------------------|\n| `system_models` | `MultiSystemModel`, `list`, `tuple`, `set` | The system models used in the `MoMoModel`.                                                  |\n| `prototype`     | `Prototype`, `None` (optional) | The prototype object to compare with system models. Defaults to `None`.                     |\n\n---\n\n##### Methods Overview\n\n| Method                                | Description                                                                                  |\n|---------------------------------------|----------------------------------------------------------------------------------------------|\n| `get_prototype()`                     | Returns the current prototype.                                                              |\n| `set_prototype(prototype)`            | Sets a new prototype.                                                                       |\n| `prototype_` (property)                | Gets or sets the prototype.                                                                 |\n| `get_system_models()`                 | Returns the current system models.                                                          |\n| `set_system_models(system_models)`    | Sets new system models and updates the prototype accordingly.                                |\n| `system_models_` (property)            | Gets or sets the system models.                                                             |\n| `get_similarity_measures()`           | Calculates similarity measures between the prototype and all combinations of system models.  |\n| `__str__()`                           | Returns a string representation of the `MoMoModel` object, including the prototype and system models. |\n\n---\n\n##### Example Usage\n\n```python\nfrom momo.model import MoMoModel\nfrom momo.system_models.system_models import MultiSystemModel, SystemModel\n\n\n# Create individual system models\ndbms = SystemModel(\n    name=\"DBMS\",\n    data=[\n        [1, 0, 1],  # Security\n        [1, 1, 0],  # Performance\n        [0, 1, 1],  # Speed\n    ],\n    features=[\"Security\", \"Performance\", \"Speed\"],\n    alternatives=[\"MySQL\", \"PostgreSQL\", \"MongoDB\"]\n)\n\nconnector = SystemModel(\n    name=\"Connector\",\n    data=[\n        [1, 0],  # Flexibility\n        [1, 1],  # Cost\n    ],\n    features=[\"Flexibility\", \"Cost\"],\n    alternatives=[\"Copper\", \"Aluminum\"]\n)\n\n# Initialize a MultiSystemModel\nmulti_system = MultiSystemModel([dbms, connector])\n\n# Initialize a MoMoModel\nmomo_model = MoMoModel(system_models=multi_system)\n\n# Access the prototype\nprint(\"Prototype:\")\nprint(momo_model.prototype)\n\n# Calculate similarity measures\nsimilarity_measures = momo_model.get_similarity_measures()\nprint(\"\\nSimilarity Measures:\")\nfor combination, measure in similarity_measures.items():\n    print(f\"{combination}: {measure}\")\n\n# String representation\nprint(\"\\nMoMoModel:\")\nprint(momo_model)\n```\n\n**Output:**\n```\nPrototype:\nDBMS       Security       0\n           Performance    0\n           Speed          0\nConnector  Flexibility    0\n           Cost           0\ndtype: int64\n\nSimilarity Measures:\n('MySQL', 'Copper'): 0.5\n('MySQL', 'Aluminum'): 1.3333333333333333\n('PostgreSQL', 'Copper'): 0.5\n('PostgreSQL', 'Aluminum'): 1.3333333333333333\n('MongoDB', 'Copper'): 0.5\n('MongoDB', 'Aluminum'): 1.3333333333333333\n\nMoMoModel:\nPrototype:\nDBMS       Security       0\n           Performance    0\n           Speed          0\nConnector  Flexibility    0\n           Cost           0\ndtype: int64\n\nSystem Models:\n                       (MySQL, Copper)  (MySQL, Aluminum)  (PostgreSQL, Copper)  (PostgreSQL, Aluminum)  (MongoDB, Copper)  (MongoDB, Aluminum)\nDBMS      Security                   1                  1                     0                       0                  1                    1\n          Performance                1                  1                     1                       1                  0                    0\n          Speed                      0                  0                     1                       1                  1                    1\nConnector Flexibility                1                  0                     1                       0                  1                    0\n          Cost                       1                  1                     1                       1                  1                    1\n```\n\n\n\n\n\n\n\n---\n\n### prototype\n\nThe `prototype` module contains the `Prototype` class, which is a subclass of `pandas.Series`. It is designed to store and manipulate hierarchical data using features and alternatives.\n\n### Prototype\n\nThe `Prototype` class extends the functionality of `pandas.Series` by allowing hierarchical data representation with support for setting values via dictionaries or lists. **And its represnt the prototype of the morphological model.**\n\n##### Key Features\n- Directly inherits all functionality from `pandas.Series`.\n- Supports setting values using hierarchical dictionaries or lists.\n- Maintains compatibility with standard pandas operations.\n\n---\n\n##### Initialization Parameters\n\n| Parameter      | Type                       | Description                                                                 |\n|----------------|----------------------------|-----------------------------------------------------------------------------|\n| `data`         | `array-like`, `Iterable`, `dict`, `scalar` | The data to be stored in the `Prototype`.                                  |\n| `index`        | `array-like` or `Index`    | The index labels for the data.                                             |\n\n---\n\n##### Methods Overview\n\n| Method                            | Description                                                                                  |\n|-----------------------------------|----------------------------------------------------------------------------------------------|\n| `set_marks(marks_list)`           | Sets values in the `Prototype` using a dictionary or list.                                   |\n| `_set_marks_dict(marks_dict)`     | Sets values in the `Prototype` from a dictionary of hierarchical data.                       |\n| `_set_marks_list(marks_list)`     | Sets values in the `Prototype` from a list.                                                  |\n\n---\n\n##### Example Usage\n\n```python\nfrom momo.prototype import Prototype\n\n\n# Initialize a prototype with hierarchical data\ndata = [0, 0, 0, 1]\nindex = [(\"System1\", \"Feature1\"), (\"System1\", \"Feature2\"), (\"System2\", \"Feature3\"), (\"System2\", \"Feature4\")]\n\nprototype = Prototype(data=data, index=index)\n\nprint(\"Initial Prototype:\")\nprint(prototype)\n\n# Set marks using a dictionary\nprototype.set_marks({\n    \"System1\": {\"Feature1\": 1, \"Feature2\": 2},\n    \"System2\": {\"Feature3\": 3, \"Feature4\": 4}\n})\n\nprint(\"\\nPrototype after setting marks (dict):\")\nprint(prototype)\n\n# Set marks using a list\nprototype.set_marks([10, 20, 30, 40])\n\nprint(\"\\nPrototype after setting marks (list):\")\nprint(prototype)\n```\n\n**Output:**\n```\nInitial Prototype:\n(System1, Feature1)    0\n(System1, Feature2)    0\n(System2, Feature3)    0\n(System2, Feature4)    1\ndtype: int64\n\nPrototype after setting marks (dict):\n(System1, Feature1)    1\n(System1, Feature2)    2\n(System2, Feature3)    3\n(System2, Feature4)    4\ndtype: int64\n\nPrototype after setting marks (list):\n(System1, Feature1)    10\n(System1, Feature2)    20\n(System2, Feature3)    30\n(System2, Feature4)    40\ndtype: int64\n```\n\n\n---\n\n### system_models\n\nThe `system_models` module contains the classes for the system models. The main classes are `SystemModel` and `MultySystemModel` which are used to create the system models.\n\n#### `SystemModel`\n\nThe `SystemModel` class is a core component designed to represent and manipulate system models. It allows you to manage a structured representation of features and alternatives, supporting data storage, validation, and various manipulations.\n\n##### Key Features\n- Manage relationships between features and alternatives.\n- Add, remove, and retrieve features and alternatives.\n- Validate the consistency of data, features, and alternatives.\n- Built-in support for `pandas.DataFrame` for structured data handling.\n\n---\n\n##### Initialization Parameters\n\n| Parameter      | Type         | Description                                                                                       |\n|----------------|--------------|---------------------------------------------------------------------------------------------------|\n| `name`         | `str`        | The name of the system model.       |\n| `data`         | `list`, `None` | The data matrix (rows: features, columns: alternatives) to initialize the system model. |\n| `features`     | `list`, `None` | The list of feature names.  |\n| `alternatives` | `list`, `None` | The list of alternative names.|\n\n---\n\n##### Methods Overview\n\n| Method                     | Description                                                                                  |\n|----------------------------|----------------------------------------------------------------------------------------------|\n| `add_feature(feature_name, alternatives)` | Adds a new feature to the system model with its alternatives.          |\n| `add_alternative(alternative_name, features)` | Adds a new alternative to the system model with its features. |\n| `remove_feature(feature_name)` | Removes a feature from the system model.                                     |\n| `remove_alternative(alternative_name)` | Removes an alternative from the system model.                        |\n| `get_features()`           | Returns a tuple of all features in the system model.                                           |\n| `get_alternatives()`       | Returns a tuple of all alternatives in the system model.                                       |\n| `features` (property)      | Returns the list of feature names as a pandas DataFrame index.                                 |\n| `alternatives` (property)  | Returns the list of alternative names as a pandas DataFrame column index.                      |\n| `loc` (property)           | Provides access to pandas DataFrame `.loc` for advanced slicing and indexing.                 |\n| `__getitem__(key)`         | Retrieves a value from the underlying data using a key (row/column-based indexing).            |\n| `__setitem__(key, value)`  | Sets a value in the underlying data using a key.                                               |\n| `__str__()`                | Returns a string representation of the system model, including its name and the data matrix.   |\n\n---\n\n##### Example Usage\n\n```python\nfrom momo.system_models.system_models import SystemModel\n\n# Initialize a system model\nmodel = SystemModel(\n    name=\"DBMS\",\n    data=[\n        [1, 0, 1],  # Security\n        [1, 1, 0],  # Performance\n        [0, 1, 1],  # Speed\n    ],\n    features=[\"Security\", \"Performance\", \"Speed\"],\n    alternatives=[\"MySQL\", \"PostgreSQL\", \"MongoDB\"]\n)\n\n# Add a new feature\nmodel.add_feature(\"Reliability\", [1, 1, 1])\n\n# Add a new alternative\nmodel.add_alternative(\"SQLite\", {\"Security\": 1, \"Performance\": 0, \"Speed\": 1, \"Reliability\": 1})\n\n# Access features and alternatives\nprint(\"Features:\", model.get_features())\nprint(\"Alternatives:\", model.get_alternatives())\nprint()\n\n# Remove a feature\nmodel.remove_feature(\"Speed\")\n\n# String representation of the model\nprint(model)\n```\n\n**Output:**\n```\nFeatures: ('Security', 'Performance', 'Speed', 'Reliability')\nAlternatives: ('MySQL', 'PostgreSQL', 'MongoDB', 'SQLite')\n\n\"DBMS\"\n             MySQL  PostgreSQL  MongoDB  SQLite\nSecurity         1           0        1       1\nPerformance      1           1        0       0\nReliability      1           1        1       1\n```\n\n---\n\n#### `MultiSystemModel`\n\nThe `MultiSystemModel` class is designed to represent and manipulate multiple system models. It supports operations like adding, removing, and combining data from multiple `SystemModel` instances into a unified structure.\n\n##### Key Features\n- Combine multiple system models into a unified structure.\n- Add, remove, and retrieve system models by name.\n- Generate combinations of alternatives across all systems.\n- Retrieve features and alternatives for all systems collectively.\n- Built-in support for `pandas.DataFrame` for data representation.\n\n---\n\n##### Initialization Parameters\n\n| Parameter          | Type                   | Description                                                                 |\n|--------------------|------------------------|-----------------------------------------------------------------------------|\n| `system_models`    | `list`, `tuple`, `set`, `None` | The list, tuple, or set of `SystemModel` instances to initialize the multi-system model. |\n\n---\n\n##### Methods Overview\n\n| Method                               | Description                                                                                  |\n|--------------------------------------|----------------------------------------------------------------------------------------------|\n| `add_system(system_model)`           | Adds a new system model to the multi-system model.                                           |\n| `add_systems(system_models)`         | Adds multiple system models to the multi-system model.                                       |\n| `remove_system(system_name)`         | Removes a system model by name.                                                             |\n| `get_system_names()`                 | Returns a tuple of all system model names in the multi-system model.                        |\n| `get_all_combinations()`             | Generates all combinations of alternatives across all system models and returns a DataFrame. |\n| `get_features_related_to_system()`   | Returns a tuple of features associated with each system in the multi-system model.           |\n| `get_all_features()`                 | Returns a tuple of all features across all systems in the multi-system model.                |\n| `get_prototype()`                    | Creates and returns a `Prototype` instance based on the features of all system models.       |\n| `__str__()`                          | Returns a string representation of the multi-system model.                                   |\n\n---\n\n##### Example Usage\n\n```python\nfrom momo.system_models.system_models import SystemModel, MultiSystemModel\n\n# Create individual system models\ndbms = SystemModel(\n    name=\"DBMS\",\n    data=[\n        [1, 0, 1],  # Security\n        [1, 1, 0],  # Performance\n        [0, 1, 1],  # Speed\n    ],\n    features=[\"Security\", \"Performance\", \"Speed\"],\n    alternatives=[\"MySQL\", \"PostgreSQL\", \"MongoDB\"]\n)\n\nconnector = SystemModel(\n    name=\"Connector\",\n    data=[\n        [1, 0],  # Flexibility\n        [1, 1],  # Cost\n    ],\n    features=[\"Flexibility\", \"Cost\"],\n    alternatives=[\"Copper\", \"Aluminum\"]\n)\n\n# Initialize a multi-system model\nmulti_system = MultiSystemModel([dbms, connector])\n\n# Add a new system model\nmulti_system.add_system(\n    SystemModel(\n        name=\"Cache\",\n        data=[\n            [1, 1],  # Caching Speed\n            [0, 1],  # Cost Efficiency\n        ],\n        features=[\"Caching Speed\", \"Cost Efficiency\"],\n        alternatives=[\"Redis\", \"Memcached\"]\n    )\n)\n\n# Retrieve system names\nprint(\"System Names:\", multi_system.get_system_names())\n\n# Retrieve all combinations of alternatives across all systems\ncombinations = multi_system.get_all_combinations()\nprint(\"\\nAll Combinations of Alternatives:\")\nprint(combinations)\n\n# Retrieve features related to each system\nrelated_features = multi_system.get_features_related_to_system()\nprint(\"\\nRelated Features:\")\nprint(related_features)\n\n# Get the prototype based on the multi-system model\nprototype = multi_system.get_prototype()\nprint(\"\\nPrototype:\")\nprint(prototype)\n```\n\n\n**Output:**\n```\nSystem Names: ('DBMS', 'Connector', 'Cache')\n\nAll Combinations of Alternatives:\n                           (MySQL, Copper, Redis)  (MySQL, Copper, Memcached)  (MySQL, Aluminum, Redis)  ...  (MongoDB, Copper, Memcached)  (MongoDB, Aluminum, Redis)  (MongoDB, Aluminum, Memcached)\nDBMS      Security                              1                           1                         1  ...                             1                           1                               1\n          Performance                           1                           1                         1  ...                             0                           0                               0\n          Speed                                 0                           0                         0  ...                             1                           1                               1\nConnector Flexibility                           1                           1                         0  ...                             1                           0                               0\n          Cost                                  1                           1                         1  ...                             1                           1                               1\nCache     Caching Speed                         1                           1                         1  ...                             1                           1                               1\n          Cost Efficiency                       0                           1                         0  ...                             1                           0                               1\n\n[7 rows x 12 columns]\n\nRelated Features:\n(('DBMS', 'Security'), ('DBMS', 'Performance'), ('DBMS', 'Speed'), ('Connector', 'Flexibility'), ('Connector', 'Cost'), ('Cache', 'Caching Speed'), ('Cache', 'Cost Efficiency'))\n\nPrototype:\nDBMS       Security           0\n           Performance        0\n           Speed              0\nConnector  Flexibility        0\n           Cost               0\nCache      Caching Speed      0\n           Cost Efficiency    0\ndtype: int64\n```\n\n\n---\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "MoMo is a module that does Morphological Modeling",
    "version": "1.3.0",
    "project_urls": {
        "Homepage": "https://github.com/danylevych/MoMo"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "71b4498823bcc176cbcaaf542b788b343acb6313cb38917bfca37c30772ecb55",
                "md5": "eb968f4fc3832bc45cdced2630c782ed",
                "sha256": "74c78fd6e6152f98189be8ddb23bef8dd43e0f954d919185d51a1dc71d661476"
            },
            "downloads": -1,
            "filename": "momo_morphological_modeling-1.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eb968f4fc3832bc45cdced2630c782ed",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16462,
            "upload_time": "2025-02-01T12:55:14",
            "upload_time_iso_8601": "2025-02-01T12:55:14.439729Z",
            "url": "https://files.pythonhosted.org/packages/71/b4/498823bcc176cbcaaf542b788b343acb6313cb38917bfca37c30772ecb55/momo_morphological_modeling-1.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "30820d80f6cb4698428f78bfb293665fad6f7667563d2588af0f5767a2021506",
                "md5": "b64e6e03996ff8db02ff6ead7c589543",
                "sha256": "c77f52d54d7fb4f9a9d9e61c75179df0130fb58eefa9809e28f816e3e6e7ef1b"
            },
            "downloads": -1,
            "filename": "momo_morphological_modeling-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b64e6e03996ff8db02ff6ead7c589543",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17427,
            "upload_time": "2025-02-01T12:55:17",
            "upload_time_iso_8601": "2025-02-01T12:55:17.102666Z",
            "url": "https://files.pythonhosted.org/packages/30/82/0d80f6cb4698428f78bfb293665fad6f7667563d2588af0f5767a2021506/momo_morphological_modeling-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-01 12:55:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "danylevych",
    "github_project": "MoMo",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "contourpy",
            "specs": [
                [
                    "==",
                    "1.3.1"
                ]
            ]
        },
        {
            "name": "cycler",
            "specs": [
                [
                    "==",
                    "0.12.1"
                ]
            ]
        },
        {
            "name": "fonttools",
            "specs": [
                [
                    "==",
                    "4.55.3"
                ]
            ]
        },
        {
            "name": "kiwisolver",
            "specs": [
                [
                    "==",
                    "1.4.7"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.9.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "24.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.2.3"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    "==",
                    "11.0.0"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "3.2.0"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    "==",
                    "2.9.0.post0"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2024.2"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.17.0"
                ]
            ]
        },
        {
            "name": "tzdata",
            "specs": [
                [
                    "==",
                    "2024.2"
                ]
            ]
        }
    ],
    "lcname": "momo-morphological-modeling"
}
        
Elapsed time: 0.42026s