monai-weekly


Namemonai-weekly JSON
Version 1.6.dev2528 PyPI version JSON
download
home_pagehttps://monai.io/
SummaryAI Toolkit for Healthcare Imaging
upload_time2025-07-13 02:46:27
maintainerNone
docs_urlNone
authorMONAI Consortium
requires_python>=3.9
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements torch numpy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src="https://raw.githubusercontent.com/Project-MONAI/MONAI/dev/docs/images/MONAI-logo-color.png" width="50%" alt='project-monai'>
</p>

**M**edical **O**pen **N**etwork for **AI**

![Supported Python versions](https://raw.githubusercontent.com/Project-MONAI/MONAI/dev/docs/images/python.svg)
[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](https://opensource.org/licenses/Apache-2.0)
[![PyPI version](https://badge.fury.io/py/monai.svg)](https://badge.fury.io/py/monai)
[![docker](https://img.shields.io/badge/docker-pull-green.svg?logo=docker&logoColor=white)](https://hub.docker.com/r/projectmonai/monai)
[![conda](https://img.shields.io/conda/vn/conda-forge/monai?color=green)](https://anaconda.org/conda-forge/monai)

[![premerge](https://github.com/Project-MONAI/MONAI/actions/workflows/pythonapp.yml/badge.svg?branch=dev)](https://github.com/Project-MONAI/MONAI/actions/workflows/pythonapp.yml)
[![postmerge](https://img.shields.io/github/checks-status/project-monai/monai/dev?label=postmerge)](https://github.com/Project-MONAI/MONAI/actions?query=branch%3Adev)
[![Documentation Status](https://readthedocs.org/projects/monai/badge/?version=latest)](https://docs.monai.io/en/latest/)
[![codecov](https://codecov.io/gh/Project-MONAI/MONAI/branch/dev/graph/badge.svg?token=6FTC7U1JJ4)](https://codecov.io/gh/Project-MONAI/MONAI)
[![monai Downloads Last Month](https://assets.piptrends.com/get-last-month-downloads-badge/monai.svg 'monai Downloads Last Month by pip Trends')](https://piptrends.com/package/monai)

MONAI is a [PyTorch](https://pytorch.org/)-based, [open-source](https://github.com/Project-MONAI/MONAI/blob/dev/LICENSE) framework for deep learning in healthcare imaging, part of the [PyTorch Ecosystem](https://pytorch.org/ecosystem/).
Its ambitions are as follows:

- Developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- Creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- Providing researchers with the optimized and standardized way to create and evaluate deep learning models.

## Features

> _Please see [the technical highlights](https://docs.monai.io/en/latest/highlights.html) and [What's New](https://docs.monai.io/en/latest/whatsnew.html) of the milestone releases._

- flexible pre-processing for multi-dimensional medical imaging data;
- compositional & portable APIs for ease of integration in existing workflows;
- domain-specific implementations for networks, losses, evaluation metrics and more;
- customizable design for varying user expertise;
- multi-GPU multi-node data parallelism support.

## Requirements

MONAI works with the [currently supported versions of Python](https://devguide.python.org/versions), and depends directly on NumPy and PyTorch with many optional dependencies.

* Major releases of MONAI will have dependency versions stated for them. The current state of the `dev` branch in this repository is the unreleased development version of MONAI which typically will support current versions of dependencies and include updates and bug fixes to do so.
* PyTorch support covers [the current version](https://github.com/pytorch/pytorch/releases) plus three previous minor versions. If compatibility issues with a PyTorch version and other dependencies arise, support for a version may be delayed until a major release.
* Our support policy for other dependencies adheres for the most part to [SPEC0](https://scientific-python.org/specs/spec-0000), where dependency versions are supported where possible for up to two years. Discovered vulnerabilities or defects may require certain versions to be explicitly not supported.
* See the `requirements*.txt` files for dependency version information.

## Installation

To install [the current release](https://pypi.org/project/monai/), you can simply run:

```bash
pip install monai
```

Please refer to [the installation guide](https://docs.monai.io/en/latest/installation.html) for other installation options.

## Getting Started

[MedNIST demo](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/2d_classification/mednist_tutorial.ipynb) and [MONAI for PyTorch Users](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/modules/developer_guide.ipynb) are available on Colab.

Examples and notebook tutorials are located at [Project-MONAI/tutorials](https://github.com/Project-MONAI/tutorials).

Technical documentation is available at [docs.monai.io](https://docs.monai.io).

## Citation

If you have used MONAI in your research, please cite us! The citation can be exported from: <https://arxiv.org/abs/2211.02701>.

## Model Zoo

[The MONAI Model Zoo](https://github.com/Project-MONAI/model-zoo) is a place for researchers and data scientists to share the latest and great models from the community.
Utilizing [the MONAI Bundle format](https://docs.monai.io/en/latest/bundle_intro.html) makes it easy to [get started](https://github.com/Project-MONAI/tutorials/tree/main/model_zoo) building workflows with MONAI.

## Contributing

For guidance on making a contribution to MONAI, see the [contributing guidelines](https://github.com/Project-MONAI/MONAI/blob/dev/CONTRIBUTING.md).

## Community

Join the conversation on Twitter/X [@ProjectMONAI](https://twitter.com/ProjectMONAI), [LinkedIn](https://www.linkedin.com/company/projectmonai), or join our [Slack channel](https://forms.gle/QTxJq3hFictp31UM9).

Ask and answer questions over on [MONAI's GitHub Discussions tab](https://github.com/Project-MONAI/MONAI/discussions).

## Links

- Website: <https://monai.io/>
- API documentation (milestone): <https://docs.monai.io/>
- API documentation (latest dev): <https://docs.monai.io/en/latest/>
- Code: <https://github.com/Project-MONAI/MONAI>
- Project tracker: <https://github.com/Project-MONAI/MONAI/projects>
- Issue tracker: <https://github.com/Project-MONAI/MONAI/issues>
- Wiki: <https://github.com/Project-MONAI/MONAI/wiki>
- Test status: <https://github.com/Project-MONAI/MONAI/actions>
- PyPI package: <https://pypi.org/project/monai/>
- conda-forge: <https://anaconda.org/conda-forge/monai>
- Weekly previews: <https://pypi.org/project/monai-weekly/>
- Docker Hub: <https://hub.docker.com/r/projectmonai/monai>

            

Raw data

            {
    "_id": null,
    "home_page": "https://monai.io/",
    "name": "monai-weekly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "MONAI Consortium",
    "author_email": "monai.contact@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3e/94/e93cd8fb008864038a35f52cbbadf3b845870bfbbbc5f140cbb735d7dd2b/monai_weekly-1.6.dev2528.tar.gz",
    "platform": "OS Independent",
    "description": "<p align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/Project-MONAI/MONAI/dev/docs/images/MONAI-logo-color.png\" width=\"50%\" alt='project-monai'>\n</p>\n\n**M**edical **O**pen **N**etwork for **AI**\n\n![Supported Python versions](https://raw.githubusercontent.com/Project-MONAI/MONAI/dev/docs/images/python.svg)\n[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](https://opensource.org/licenses/Apache-2.0)\n[![PyPI version](https://badge.fury.io/py/monai.svg)](https://badge.fury.io/py/monai)\n[![docker](https://img.shields.io/badge/docker-pull-green.svg?logo=docker&logoColor=white)](https://hub.docker.com/r/projectmonai/monai)\n[![conda](https://img.shields.io/conda/vn/conda-forge/monai?color=green)](https://anaconda.org/conda-forge/monai)\n\n[![premerge](https://github.com/Project-MONAI/MONAI/actions/workflows/pythonapp.yml/badge.svg?branch=dev)](https://github.com/Project-MONAI/MONAI/actions/workflows/pythonapp.yml)\n[![postmerge](https://img.shields.io/github/checks-status/project-monai/monai/dev?label=postmerge)](https://github.com/Project-MONAI/MONAI/actions?query=branch%3Adev)\n[![Documentation Status](https://readthedocs.org/projects/monai/badge/?version=latest)](https://docs.monai.io/en/latest/)\n[![codecov](https://codecov.io/gh/Project-MONAI/MONAI/branch/dev/graph/badge.svg?token=6FTC7U1JJ4)](https://codecov.io/gh/Project-MONAI/MONAI)\n[![monai Downloads Last Month](https://assets.piptrends.com/get-last-month-downloads-badge/monai.svg 'monai Downloads Last Month by pip Trends')](https://piptrends.com/package/monai)\n\nMONAI is a [PyTorch](https://pytorch.org/)-based, [open-source](https://github.com/Project-MONAI/MONAI/blob/dev/LICENSE) framework for deep learning in healthcare imaging, part of the [PyTorch Ecosystem](https://pytorch.org/ecosystem/).\nIts ambitions are as follows:\n\n- Developing a community of academic, industrial and clinical researchers collaborating on a common foundation;\n- Creating state-of-the-art, end-to-end training workflows for healthcare imaging;\n- Providing researchers with the optimized and standardized way to create and evaluate deep learning models.\n\n## Features\n\n> _Please see [the technical highlights](https://docs.monai.io/en/latest/highlights.html) and [What's New](https://docs.monai.io/en/latest/whatsnew.html) of the milestone releases._\n\n- flexible pre-processing for multi-dimensional medical imaging data;\n- compositional & portable APIs for ease of integration in existing workflows;\n- domain-specific implementations for networks, losses, evaluation metrics and more;\n- customizable design for varying user expertise;\n- multi-GPU multi-node data parallelism support.\n\n## Requirements\n\nMONAI works with the [currently supported versions of Python](https://devguide.python.org/versions), and depends directly on NumPy and PyTorch with many optional dependencies.\n\n* Major releases of MONAI will have dependency versions stated for them. The current state of the `dev` branch in this repository is the unreleased development version of MONAI which typically will support current versions of dependencies and include updates and bug fixes to do so.\n* PyTorch support covers [the current version](https://github.com/pytorch/pytorch/releases) plus three previous minor versions. If compatibility issues with a PyTorch version and other dependencies arise, support for a version may be delayed until a major release.\n* Our support policy for other dependencies adheres for the most part to [SPEC0](https://scientific-python.org/specs/spec-0000), where dependency versions are supported where possible for up to two years. Discovered vulnerabilities or defects may require certain versions to be explicitly not supported.\n* See the `requirements*.txt` files for dependency version information.\n\n## Installation\n\nTo install [the current release](https://pypi.org/project/monai/), you can simply run:\n\n```bash\npip install monai\n```\n\nPlease refer to [the installation guide](https://docs.monai.io/en/latest/installation.html) for other installation options.\n\n## Getting Started\n\n[MedNIST demo](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/2d_classification/mednist_tutorial.ipynb) and [MONAI for PyTorch Users](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/modules/developer_guide.ipynb) are available on Colab.\n\nExamples and notebook tutorials are located at [Project-MONAI/tutorials](https://github.com/Project-MONAI/tutorials).\n\nTechnical documentation is available at [docs.monai.io](https://docs.monai.io).\n\n## Citation\n\nIf you have used MONAI in your research, please cite us! The citation can be exported from: <https://arxiv.org/abs/2211.02701>.\n\n## Model Zoo\n\n[The MONAI Model Zoo](https://github.com/Project-MONAI/model-zoo) is a place for researchers and data scientists to share the latest and great models from the community.\nUtilizing [the MONAI Bundle format](https://docs.monai.io/en/latest/bundle_intro.html) makes it easy to [get started](https://github.com/Project-MONAI/tutorials/tree/main/model_zoo) building workflows with MONAI.\n\n## Contributing\n\nFor guidance on making a contribution to MONAI, see the [contributing guidelines](https://github.com/Project-MONAI/MONAI/blob/dev/CONTRIBUTING.md).\n\n## Community\n\nJoin the conversation on Twitter/X [@ProjectMONAI](https://twitter.com/ProjectMONAI), [LinkedIn](https://www.linkedin.com/company/projectmonai), or join our [Slack channel](https://forms.gle/QTxJq3hFictp31UM9).\n\nAsk and answer questions over on [MONAI's GitHub Discussions tab](https://github.com/Project-MONAI/MONAI/discussions).\n\n## Links\n\n- Website: <https://monai.io/>\n- API documentation (milestone): <https://docs.monai.io/>\n- API documentation (latest dev): <https://docs.monai.io/en/latest/>\n- Code: <https://github.com/Project-MONAI/MONAI>\n- Project tracker: <https://github.com/Project-MONAI/MONAI/projects>\n- Issue tracker: <https://github.com/Project-MONAI/MONAI/issues>\n- Wiki: <https://github.com/Project-MONAI/MONAI/wiki>\n- Test status: <https://github.com/Project-MONAI/MONAI/actions>\n- PyPI package: <https://pypi.org/project/monai/>\n- conda-forge: <https://anaconda.org/conda-forge/monai>\n- Weekly previews: <https://pypi.org/project/monai-weekly/>\n- Docker Hub: <https://hub.docker.com/r/projectmonai/monai>\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "AI Toolkit for Healthcare Imaging",
    "version": "1.6.dev2528",
    "project_urls": {
        "Bug Tracker": "https://github.com/Project-MONAI/MONAI/issues",
        "Documentation": "https://docs.monai.io/",
        "Homepage": "https://monai.io/",
        "Source Code": "https://github.com/Project-MONAI/MONAI"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "391d277ed37c93a4aff85e636073a754afc57fc8bd927ba8c07a2cdffcddc6b9",
                "md5": "e1ab8c3c9343bd859f6da9fdc7b8277b",
                "sha256": "389e9fcdd4c3903292861d839c4130023207c4b55ae5f25cd1bdc5e7c0932259"
            },
            "downloads": -1,
            "filename": "monai_weekly-1.6.dev2528-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e1ab8c3c9343bd859f6da9fdc7b8277b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 2659814,
            "upload_time": "2025-07-13T02:46:25",
            "upload_time_iso_8601": "2025-07-13T02:46:25.130688Z",
            "url": "https://files.pythonhosted.org/packages/39/1d/277ed37c93a4aff85e636073a754afc57fc8bd927ba8c07a2cdffcddc6b9/monai_weekly-1.6.dev2528-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3e94e93cd8fb008864038a35f52cbbadf3b845870bfbbbc5f140cbb735d7dd2b",
                "md5": "3fc913650fe52077e64404dca74060e2",
                "sha256": "a0fe4ce751084eef4346fe30cf23fa8e875c69d2c50eeb93a9ee44bd549b0158"
            },
            "downloads": -1,
            "filename": "monai_weekly-1.6.dev2528.tar.gz",
            "has_sig": false,
            "md5_digest": "3fc913650fe52077e64404dca74060e2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1695745,
            "upload_time": "2025-07-13T02:46:27",
            "upload_time_iso_8601": "2025-07-13T02:46:27.304147Z",
            "url": "https://files.pythonhosted.org/packages/3e/94/e93cd8fb008864038a35f52cbbadf3b845870bfbbbc5f140cbb735d7dd2b/monai_weekly-1.6.dev2528.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-13 02:46:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Project-MONAI",
    "github_project": "MONAI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "torch",
            "specs": [
                [
                    "<",
                    "2.7.0"
                ],
                [
                    ">=",
                    "2.4.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.24"
                ],
                [
                    "<",
                    "3.0"
                ]
            ]
        }
    ],
    "lcname": "monai-weekly"
}
        
Elapsed time: 0.51928s