mooseZ is an AI-inference engine based on nnUNet, designed for 3D clinical and preclinical whole-body segmentation tasks. It serves models tailored towards different modalities such as PET, CT, and MR. mooseZ provides fast and accurate segmentation results, making it a reliable tool for medical imaging applications.
Raw data
{
"_id": null,
"home_page": "https://github.com/ENHANCE-PET/MOOSE",
"name": "moosez",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "moosez model-zoo nnUNet medical-imaging tumor-segmentation organ-segmentation bone-segmentation lung-segmentation muscle-segmentation fat-segmentation vessel-segmentation vertebral-segmentation rib-segmentation preclinical-segmentation clinical-segmentation",
"author": "Lalith Kumar Shiyam Sundar | Sebastian Gutschmayer | Manuel Pires",
"author_email": "Lalith.shiyamsundar@meduniwien.ac.at",
"download_url": "https://files.pythonhosted.org/packages/a7/f7/8a374944eac79f317c279f3c2c887726175c0b1a5c57bbaef334ea07e38f/moosez-3.0.11.tar.gz",
"platform": null,
"description": "mooseZ is an AI-inference engine based on nnUNet, designed for 3D clinical and preclinical whole-body segmentation tasks. It serves models tailored towards different modalities such as PET, CT, and MR. mooseZ provides fast and accurate segmentation results, making it a reliable tool for medical imaging applications.\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "An AI-inference engine for 3D clinical and preclinical whole-body segmentation tasks",
"version": "3.0.11",
"project_urls": {
"Homepage": "https://github.com/ENHANCE-PET/MOOSE"
},
"split_keywords": [
"moosez",
"model-zoo",
"nnunet",
"medical-imaging",
"tumor-segmentation",
"organ-segmentation",
"bone-segmentation",
"lung-segmentation",
"muscle-segmentation",
"fat-segmentation",
"vessel-segmentation",
"vertebral-segmentation",
"rib-segmentation",
"preclinical-segmentation",
"clinical-segmentation"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5f2ce4698bbcdcefca66b37d6d90b141f97d5ad5fc5059462c621cdf38fe4456",
"md5": "6a2f9e2501e212fea2319bf06a1fc335",
"sha256": "beccaa31df4b8830709e3b4e02caca63162b5b4fdac293c4172d7e292add56db"
},
"downloads": -1,
"filename": "moosez-3.0.11-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6a2f9e2501e212fea2319bf06a1fc335",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 40844,
"upload_time": "2025-01-29T18:51:33",
"upload_time_iso_8601": "2025-01-29T18:51:33.184707Z",
"url": "https://files.pythonhosted.org/packages/5f/2c/e4698bbcdcefca66b37d6d90b141f97d5ad5fc5059462c621cdf38fe4456/moosez-3.0.11-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a7f78a374944eac79f317c279f3c2c887726175c0b1a5c57bbaef334ea07e38f",
"md5": "1788477ec83f7d0f6dfea2aa388a52e8",
"sha256": "d44f643efb4f5676f56a402045ea1b2a68f9d288e626c9d2c0c31fae9baa2060"
},
"downloads": -1,
"filename": "moosez-3.0.11.tar.gz",
"has_sig": false,
"md5_digest": "1788477ec83f7d0f6dfea2aa388a52e8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 43687,
"upload_time": "2025-01-29T18:51:35",
"upload_time_iso_8601": "2025-01-29T18:51:35.227844Z",
"url": "https://files.pythonhosted.org/packages/a7/f7/8a374944eac79f317c279f3c2c887726175c0b1a5c57bbaef334ea07e38f/moosez-3.0.11.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-29 18:51:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ENHANCE-PET",
"github_project": "MOOSE",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "nnunetv2",
"specs": []
},
{
"name": "halo",
"specs": [
[
"~=",
"0.0.31"
]
]
},
{
"name": "SimpleITK",
"specs": [
[
"~=",
"2.2.1"
]
]
},
{
"name": "pydicom",
"specs": [
[
"~=",
"2.2.2"
]
]
},
{
"name": "argparse",
"specs": [
[
"~=",
"1.4.0"
]
]
},
{
"name": "numpy",
"specs": []
},
{
"name": "openpyxl",
"specs": [
[
"~=",
"3.0.9"
]
]
},
{
"name": "pyfiglet",
"specs": [
[
"~=",
"0.8.post1"
]
]
},
{
"name": "natsort",
"specs": [
[
"~=",
"8.1.0"
]
]
},
{
"name": "colorama",
"specs": [
[
"~=",
"0.4.6"
]
]
},
{
"name": "dask",
"specs": [
[
"~=",
"2023.6.0"
]
]
},
{
"name": "rich",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "dicom2nifti",
"specs": [
[
"~=",
"2.4.8"
]
]
},
{
"name": "emoji",
"specs": []
},
{
"name": "requests",
"specs": []
},
{
"name": "psutil",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "nibabel",
"specs": []
}
],
"lcname": "moosez"
}