# mSSFP (Multi-SSFP Reconstruction Library)
mSSFP is library for image reconstuction for multi-acqusition SSFP. This library supports ssfp simulations, various phantom generators, and various ssfp recontructions using muliple phase-cycled ssfp images.
Steady-Stead Free Precession (SSFP) MRI is class of fast pulse sequence capable of generating high SNR images. However, SSFP is highly-sensitive to off-resonance effects, which cause banding artifacts. Multiple SSFP images with different phase cycle amounts can be combined to suppress banding artifacts and for the estimation of quantitative biomarker like T1/T2 relaxation parameter mappings. Multiple methods for band suppression have been developed over the years, and this library gives working code and notebook examples for a variety of these reconstrcution techniques.
## Notebooks
Jupyter notebooks for examples of how to use the mSSFP library.
- Basic SSFP Simulations ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/1_sspf_simulations.ipynb))
- Phantom Examples ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/2_phantoms.ipynb))
- SSFP Banding Artifact Removal ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/3_ssfp_band_removal.ipynb))
- PLANET for T2/T1 Mapping of SSFP ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/4_ssfp_brain_planet.ipynb))
- SuperFOV for accelerated SSFP ([simple notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/5_superFOV.ipynb), [detailed notebook](notebooks/5a_superFOV_detailed.ipynb))
## Features
### Simultations
- SSFP
### Phantoms
- Shepp-Logan phantom
- Simple block phantoms
- Brain phantom
### Banding Artifact Removal Recons
- Sum of squares
- Eliptical singal model
- Super field of view (superFOV)
### Quantitative MR Recons
- PLANET for T2/T1 mapping
## Development
This project requires python 3.8+ and has the dependancies in requirement.txt
To setup a python enviroment with conda:
> ```
> conda create -n mssfp python=3.8
> conda activate mssfp
> ```
> Then install packages with pip using requirements file
> ```
> pip install -r requirements.txt
> ```
Raw data
{
"_id": null,
"home_page": null,
"name": "mssfp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "grappa, mri, sense",
"author": null,
"author_email": "Michael Mendoza <askmichaelmendoza@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/8c/ef/11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969/mssfp-0.0.4.tar.gz",
"platform": null,
"description": "\n# mSSFP (Multi-SSFP Reconstruction Library)\n\nmSSFP is library for image reconstuction for multi-acqusition SSFP. This library supports ssfp simulations, various phantom generators, and various ssfp recontructions using muliple phase-cycled ssfp images. \n\nSteady-Stead Free Precession (SSFP) MRI is class of fast pulse sequence capable of generating high SNR images. However, SSFP is highly-sensitive to off-resonance effects, which cause banding artifacts. Multiple SSFP images with different phase cycle amounts can be combined to suppress banding artifacts and for the estimation of quantitative biomarker like T1/T2 relaxation parameter mappings. Multiple methods for band suppression have been developed over the years, and this library gives working code and notebook examples for a variety of these reconstrcution techniques.\n\n## Notebooks\n\nJupyter notebooks for examples of how to use the mSSFP library.\n\n- Basic SSFP Simulations ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/1_sspf_simulations.ipynb))\n- Phantom Examples ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/2_phantoms.ipynb))\n- SSFP Banding Artifact Removal ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/3_ssfp_band_removal.ipynb))\n- PLANET for T2/T1 Mapping of SSFP ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/4_ssfp_brain_planet.ipynb))\n- SuperFOV for accelerated SSFP ([simple notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/5_superFOV.ipynb), [detailed notebook](notebooks/5a_superFOV_detailed.ipynb))\n\n## Features\n\n### Simultations\n - SSFP\n\n### Phantoms\n - Shepp-Logan phantom\n - Simple block phantoms\n - Brain phantom\n### Banding Artifact Removal Recons\n - Sum of squares \n - Eliptical singal model \n - Super field of view (superFOV)\n### Quantitative MR Recons\n - PLANET for T2/T1 mapping\n\n## Development\n\nThis project requires python 3.8+ and has the dependancies in requirement.txt\n\nTo setup a python enviroment with conda:\n\n> ```\n> conda create -n mssfp python=3.8 \n> conda activate mssfp\n> ```\n> Then install packages with pip using requirements file \n> ```\n> pip install -r requirements.txt\n> ```\n",
"bugtrack_url": null,
"license": null,
"summary": "mSSFP is library for image reconstuction for multi-acqusition SSFP",
"version": "0.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/michaelmendoza/mssfp/issues",
"Homepage": "https://github.com/michaelmendoza/mssfp"
},
"split_keywords": [
"grappa",
" mri",
" sense"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "735dfa76c0389394613189c1cda2b1bf9f82d4873d7f816067c20c3c6ab9afe3",
"md5": "4dc40346784dabf3fbf0776975de00d6",
"sha256": "2040b74d90ff35f52ef9e9e84a65fa710d7432685182aba4814dfd673bf2ce4d"
},
"downloads": -1,
"filename": "mssfp-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4dc40346784dabf3fbf0776975de00d6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 21874,
"upload_time": "2024-11-15T16:45:47",
"upload_time_iso_8601": "2024-11-15T16:45:47.770598Z",
"url": "https://files.pythonhosted.org/packages/73/5d/fa76c0389394613189c1cda2b1bf9f82d4873d7f816067c20c3c6ab9afe3/mssfp-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8cef11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969",
"md5": "ab7367d85adc2a6b6669adc1b03f9394",
"sha256": "fd5739983ec42c752f773e0e2c68b7362ecc744d4bc4f79e15d22756b9c16318"
},
"downloads": -1,
"filename": "mssfp-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "ab7367d85adc2a6b6669adc1b03f9394",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 16815,
"upload_time": "2024-11-15T16:45:49",
"upload_time_iso_8601": "2024-11-15T16:45:49.360277Z",
"url": "https://files.pythonhosted.org/packages/8c/ef/11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969/mssfp-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-15 16:45:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "michaelmendoza",
"github_project": "mssfp",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "elasticdeform",
"specs": []
},
{
"name": "ellipsinator",
"specs": []
},
{
"name": "gdown",
"specs": []
},
{
"name": "imageio",
"specs": []
},
{
"name": "imageio-ffmpeg",
"specs": []
},
{
"name": "jupyterlab",
"specs": [
[
"==",
"3.5.3"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.6.3"
]
]
},
{
"name": "nibabel",
"specs": []
},
{
"name": "numpy",
"specs": [
[
"==",
"1.23.5"
]
]
},
{
"name": "scikit-image",
"specs": []
},
{
"name": "scipy",
"specs": [
[
"==",
"1.10.0"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.64.1"
]
]
}
],
"lcname": "mssfp"
}