mssfp


Namemssfp JSON
Version 0.0.4 PyPI version JSON
download
home_pageNone
SummarymSSFP is library for image reconstuction for multi-acqusition SSFP
upload_time2024-11-15 16:45:49
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords grappa mri sense
VCS
bugtrack_url
requirements elasticdeform ellipsinator gdown imageio imageio-ffmpeg jupyterlab matplotlib nibabel numpy scikit-image scipy tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# mSSFP (Multi-SSFP Reconstruction Library)

mSSFP is library for image reconstuction for multi-acqusition SSFP. This library supports ssfp simulations, various phantom generators, and various ssfp recontructions using muliple phase-cycled ssfp images. 

Steady-Stead Free Precession (SSFP) MRI is class of fast pulse sequence capable of generating high SNR images. However, SSFP is highly-sensitive to off-resonance effects, which cause banding artifacts. Multiple SSFP images with different phase cycle amounts can be combined to suppress banding artifacts and for the estimation of quantitative biomarker like T1/T2 relaxation parameter mappings. Multiple methods for band suppression have been developed over the years, and this library gives working code and notebook examples for a variety of these reconstrcution techniques.

## Notebooks

Jupyter notebooks for examples of how to use the mSSFP library.

- Basic SSFP Simulations ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/1_sspf_simulations.ipynb))
- Phantom Examples ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/2_phantoms.ipynb))
- SSFP Banding Artifact Removal ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/3_ssfp_band_removal.ipynb))
- PLANET for T2/T1 Mapping of SSFP ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/4_ssfp_brain_planet.ipynb))
- SuperFOV for accelerated SSFP ([simple notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/5_superFOV.ipynb), [detailed notebook](notebooks/5a_superFOV_detailed.ipynb))

## Features

### Simultations
  - SSFP

### Phantoms
  - Shepp-Logan phantom
  - Simple block phantoms
  - Brain phantom
### Banding Artifact Removal Recons
  - Sum of squares 
  - Eliptical singal model 
  - Super field of view (superFOV)
### Quantitative MR Recons
  - PLANET for T2/T1 mapping

## Development

This project requires python 3.8+ and has the dependancies in requirement.txt

To setup a python enviroment with conda:

> ```
> conda create -n mssfp python=3.8 
> conda activate mssfp
> ```
> Then install packages with pip using requirements file 
> ```
> pip install -r requirements.txt
> ```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mssfp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "grappa, mri, sense",
    "author": null,
    "author_email": "Michael Mendoza <askmichaelmendoza@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/8c/ef/11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969/mssfp-0.0.4.tar.gz",
    "platform": null,
    "description": "\n# mSSFP (Multi-SSFP Reconstruction Library)\n\nmSSFP is library for image reconstuction for multi-acqusition SSFP. This library supports ssfp simulations, various phantom generators, and various ssfp recontructions using muliple phase-cycled ssfp images. \n\nSteady-Stead Free Precession (SSFP) MRI is class of fast pulse sequence capable of generating high SNR images. However, SSFP is highly-sensitive to off-resonance effects, which cause banding artifacts. Multiple SSFP images with different phase cycle amounts can be combined to suppress banding artifacts and for the estimation of quantitative biomarker like T1/T2 relaxation parameter mappings. Multiple methods for band suppression have been developed over the years, and this library gives working code and notebook examples for a variety of these reconstrcution techniques.\n\n## Notebooks\n\nJupyter notebooks for examples of how to use the mSSFP library.\n\n- Basic SSFP Simulations ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/1_sspf_simulations.ipynb))\n- Phantom Examples ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/2_phantoms.ipynb))\n- SSFP Banding Artifact Removal ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/3_ssfp_band_removal.ipynb))\n- PLANET for T2/T1 Mapping of SSFP ([notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/4_ssfp_brain_planet.ipynb))\n- SuperFOV for accelerated SSFP ([simple notebook](https://github.com/michaelmendoza/mssfp/blob/master/notebooks/5_superFOV.ipynb), [detailed notebook](notebooks/5a_superFOV_detailed.ipynb))\n\n## Features\n\n### Simultations\n  - SSFP\n\n### Phantoms\n  - Shepp-Logan phantom\n  - Simple block phantoms\n  - Brain phantom\n### Banding Artifact Removal Recons\n  - Sum of squares \n  - Eliptical singal model \n  - Super field of view (superFOV)\n### Quantitative MR Recons\n  - PLANET for T2/T1 mapping\n\n## Development\n\nThis project requires python 3.8+ and has the dependancies in requirement.txt\n\nTo setup a python enviroment with conda:\n\n> ```\n> conda create -n mssfp python=3.8 \n> conda activate mssfp\n> ```\n> Then install packages with pip using requirements file \n> ```\n> pip install -r requirements.txt\n> ```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "mSSFP is library for image reconstuction for multi-acqusition SSFP",
    "version": "0.0.4",
    "project_urls": {
        "Bug Tracker": "https://github.com/michaelmendoza/mssfp/issues",
        "Homepage": "https://github.com/michaelmendoza/mssfp"
    },
    "split_keywords": [
        "grappa",
        " mri",
        " sense"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "735dfa76c0389394613189c1cda2b1bf9f82d4873d7f816067c20c3c6ab9afe3",
                "md5": "4dc40346784dabf3fbf0776975de00d6",
                "sha256": "2040b74d90ff35f52ef9e9e84a65fa710d7432685182aba4814dfd673bf2ce4d"
            },
            "downloads": -1,
            "filename": "mssfp-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4dc40346784dabf3fbf0776975de00d6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 21874,
            "upload_time": "2024-11-15T16:45:47",
            "upload_time_iso_8601": "2024-11-15T16:45:47.770598Z",
            "url": "https://files.pythonhosted.org/packages/73/5d/fa76c0389394613189c1cda2b1bf9f82d4873d7f816067c20c3c6ab9afe3/mssfp-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8cef11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969",
                "md5": "ab7367d85adc2a6b6669adc1b03f9394",
                "sha256": "fd5739983ec42c752f773e0e2c68b7362ecc744d4bc4f79e15d22756b9c16318"
            },
            "downloads": -1,
            "filename": "mssfp-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "ab7367d85adc2a6b6669adc1b03f9394",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16815,
            "upload_time": "2024-11-15T16:45:49",
            "upload_time_iso_8601": "2024-11-15T16:45:49.360277Z",
            "url": "https://files.pythonhosted.org/packages/8c/ef/11de9dd4c656009c32a8c6a2941ffd7e99a0b792d76cbb6d4da03a88c969/mssfp-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-15 16:45:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "michaelmendoza",
    "github_project": "mssfp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "elasticdeform",
            "specs": []
        },
        {
            "name": "ellipsinator",
            "specs": []
        },
        {
            "name": "gdown",
            "specs": []
        },
        {
            "name": "imageio",
            "specs": []
        },
        {
            "name": "imageio-ffmpeg",
            "specs": []
        },
        {
            "name": "jupyterlab",
            "specs": [
                [
                    "==",
                    "3.5.3"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.6.3"
                ]
            ]
        },
        {
            "name": "nibabel",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.23.5"
                ]
            ]
        },
        {
            "name": "scikit-image",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.10.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.64.1"
                ]
            ]
        }
    ],
    "lcname": "mssfp"
}
        
Elapsed time: 0.54577s