multihist


Namemultihist JSON
Version 0.6.5 PyPI version JSON
download
home_pagehttps://github.com/jelleaalbers/multihist
SummaryConvenience wrappers around numpy histograms
upload_time2022-01-27 04:09:07
maintainer
docs_urlNone
authorJelle Aalbers
requires_python
licenseMIT
keywords multihist histogram
VCS
bugtrack_url
requirements numpy
Travis-CI
coveralls test coverage No coveralls.
            multihist
===========

.. image:: https://github.com/JelleAalbers/multihist/actions/workflows/tests.yml/badge.svg
    :target: https://github.com/JelleAalbers/multihist/actions/workflows/tests.yml

`https://github.com/JelleAalbers/multihist`

Thin wrapper around numpy's histogram and histogramdd.

Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class
with methods for adding new data to existing histograms, take averages, projecting, etc.

For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).
For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.

**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.

Synopsis::

    # Create histograms just like from numpy...
    m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)

    # ...or add data incrementally:
    m = Hist1d(bins=100, range=(-3, 4))
    m.add(np.random.normal(0, 0.5, 10**4))
    m.add(np.random.normal(2, 0.2, 10**3))

    # Get the data back out:
    print(m.histogram, m.bin_edges)

    # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
    plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
    plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
    plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
    plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
    plt.legend(loc='best')
    plt.show()

    # Slicing and arithmetic behave just like ordinary ndarrays
    print("The fourth bin has %d entries" % m[3])
    m[1:4] += 4 + 2 * m[-27:-24]
    print("Now it has %d entries" % m[3])

    # Of course I couldn't resist adding a canned plotting function:
    m.plot()
    plt.show()

    # Create and show a 2d histogram. Axis names are optional.
    m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
    m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
    m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
    m2.plot()
    plt.show()

    # x and y projections return Hist1d objects
    m2.projection('x').plot(label='x projection')
    m2.projection(1).plot(label='y projection')
    plt.legend()
    plt.show()




History
-------

------------------
0.6.5 (2022-01-26)
------------------
* 'model' option for error bars, showing Poisson quantiles (#14)
* Fix vmin/vmax for matplotlib >3.3, resume CI tests (#15)
* Hist1d.data_for_plot returns numbers used in error calculation

------------------
0.6.4 (2021-01-17)
------------------
* Prevent object array creation (#12)

------------------
0.6.3 (2020-01-22)
------------------
* Feldman-Cousins errors for Hist1d.plot (#10)

------------------
0.6.2 (2020-01-15)
------------------
* Fix rebinning for empty histograms (#9)

------------------
0.6.1 (2019-12-05)
------------------
* Fixes for #7 (#8)

------------------
0.6.0 (2019-06-30)
------------------
* Correct step plotting at edges, other plotting fixes
* Histogram numpy structured arrays
* Fix deprecation warnings (#6)
* `lookup_hist`
* `.max()` and `.min()` methods
* percentile support for higher-dimensional histograms
* Improve Hist1d.get_random (also randomize in bin)

------------------
0.5.4 (2017-09-20)
------------------
* Fix issue with input from dask

------------------
0.5.3 (2017-09-18)
------------------
* Fix python 2 support

------------------
0.5.2 (2017-08-08)
------------------
* Fix colorbar arguments to Histdd.plot (#4)
* percentile for Hist1d
* rebin method for Histdd (experimental)

------------------
0.5.1 (2017-03-22)
------------------
* get_random for Histdd no longer just returns bin centers (Hist1d does stil...)
* lookup for Hist1d. When will I finally merge the classes...

------------------
0.5.0 (2016-10-07)
------------------
* pandas.DataFrame and dask.dataframe support
* dimensions option to Histdd to init axis_names and bin_centers at once

------------------
0.4.3 (2016-10-03)
------------------
* Remove matplotlib requirement (still required for plotting features)

------------------
0.4.2 (2016-08-10)
------------------
* Fix small bug for >=3 d histograms

------------------
0.4.1 (2016-17-14)
------------------
* get_random and lookup for Histdd. Not really tested yet.

------------------
0.4.0 (2016-02-05)
------------------
* .std function for Histdd
* Fix off-by-one errors

------------------
0.3.0 (2015-09-28)
------------------
* Several new histdd functions: cumulate, normalize, percentile...
* Python 2 compatibility

------------------
0.2.1 (2015-08-18)
------------------
* Histdd functions sum, slice, average now also work

----------------
0.2 (2015-08-06)
----------------
* Multidimensional histograms
* Axes naming

--------------------
0.1.1-4 (2015-08-04)
--------------------
Correct various rookie mistakes in packaging...
Hey, it's my first pypi package!

----------------
0.1 (2015-08-04)
----------------
Initial release

* Hist1d, Hist2d
* Basic test suite
* Basic readme



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jelleaalbers/multihist",
    "name": "multihist",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "multihist,histogram",
    "author": "Jelle Aalbers",
    "author_email": "j.aalbers@uva.nl",
    "download_url": "https://files.pythonhosted.org/packages/73/df/bcbe4c72f03c4cb0f550329d6148628fe1f81f7da95d3c2afb867fb437f4/multihist-0.6.5.tar.gz",
    "platform": "",
    "description": "multihist\n===========\n\n.. image:: https://github.com/JelleAalbers/multihist/actions/workflows/tests.yml/badge.svg\n    :target: https://github.com/JelleAalbers/multihist/actions/workflows/tests.yml\n\n`https://github.com/JelleAalbers/multihist`\n\nThin wrapper around numpy's histogram and histogramdd.\n\nNumpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class\nwith methods for adding new data to existing histograms, take averages, projecting, etc.\n\nFor 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std).\nFor d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.\n\n**NB**: For a faster and richer histogram package, check out `hist <https://github.com/scikit-hep/hist>`_ from scikit-hep. Alternatively, look at its parent library `boost-histogram <https://github.com/scikit-hep/boost-histogram>`_, which has `numpy-compatible features <https://boost-histogram.readthedocs.io/en/latest/usage/numpy.html>`_. Multihist was created back in 2015, long before those libraries existed.\n\nSynopsis::\n\n    # Create histograms just like from numpy...\n    m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)\n\n    # ...or add data incrementally:\n    m = Hist1d(bins=100, range=(-3, 4))\n    m.add(np.random.normal(0, 0.5, 10**4))\n    m.add(np.random.normal(2, 0.2, 10**3))\n\n    # Get the data back out:\n    print(m.histogram, m.bin_edges)\n\n    # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std\n    plt.plot(m.bin_centers, m.normalized_histogram, label=\"Normalized histogram\", drawstyle='steps')\n    plt.plot(m.bin_centers, m.density, label=\"Empirical PDF\", drawstyle='steps')\n    plt.plot(m.bin_centers, m.cumulative_density, label=\"Empirical CDF\", drawstyle='steps')\n    plt.title(\"Estimated mean %0.2f, estimated std %0.2f\" % (m.mean, m.std))\n    plt.legend(loc='best')\n    plt.show()\n\n    # Slicing and arithmetic behave just like ordinary ndarrays\n    print(\"The fourth bin has %d entries\" % m[3])\n    m[1:4] += 4 + 2 * m[-27:-24]\n    print(\"Now it has %d entries\" % m[3])\n\n    # Of course I couldn't resist adding a canned plotting function:\n    m.plot()\n    plt.show()\n\n    # Create and show a 2d histogram. Axis names are optional.\n    m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])\n    m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))\n    m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))\n    m2.plot()\n    plt.show()\n\n    # x and y projections return Hist1d objects\n    m2.projection('x').plot(label='x projection')\n    m2.projection(1).plot(label='y projection')\n    plt.legend()\n    plt.show()\n\n\n\n\nHistory\n-------\n\n------------------\n0.6.5 (2022-01-26)\n------------------\n* 'model' option for error bars, showing Poisson quantiles (#14)\n* Fix vmin/vmax for matplotlib >3.3, resume CI tests (#15)\n* Hist1d.data_for_plot returns numbers used in error calculation\n\n------------------\n0.6.4 (2021-01-17)\n------------------\n* Prevent object array creation (#12)\n\n------------------\n0.6.3 (2020-01-22)\n------------------\n* Feldman-Cousins errors for Hist1d.plot (#10)\n\n------------------\n0.6.2 (2020-01-15)\n------------------\n* Fix rebinning for empty histograms (#9)\n\n------------------\n0.6.1 (2019-12-05)\n------------------\n* Fixes for #7 (#8)\n\n------------------\n0.6.0 (2019-06-30)\n------------------\n* Correct step plotting at edges, other plotting fixes\n* Histogram numpy structured arrays\n* Fix deprecation warnings (#6)\n* `lookup_hist`\n* `.max()` and `.min()` methods\n* percentile support for higher-dimensional histograms\n* Improve Hist1d.get_random (also randomize in bin)\n\n------------------\n0.5.4 (2017-09-20)\n------------------\n* Fix issue with input from dask\n\n------------------\n0.5.3 (2017-09-18)\n------------------\n* Fix python 2 support\n\n------------------\n0.5.2 (2017-08-08)\n------------------\n* Fix colorbar arguments to Histdd.plot (#4)\n* percentile for Hist1d\n* rebin method for Histdd (experimental)\n\n------------------\n0.5.1 (2017-03-22)\n------------------\n* get_random for Histdd no longer just returns bin centers (Hist1d does stil...)\n* lookup for Hist1d. When will I finally merge the classes...\n\n------------------\n0.5.0 (2016-10-07)\n------------------\n* pandas.DataFrame and dask.dataframe support\n* dimensions option to Histdd to init axis_names and bin_centers at once\n\n------------------\n0.4.3 (2016-10-03)\n------------------\n* Remove matplotlib requirement (still required for plotting features)\n\n------------------\n0.4.2 (2016-08-10)\n------------------\n* Fix small bug for >=3 d histograms\n\n------------------\n0.4.1 (2016-17-14)\n------------------\n* get_random and lookup for Histdd. Not really tested yet.\n\n------------------\n0.4.0 (2016-02-05)\n------------------\n* .std function for Histdd\n* Fix off-by-one errors\n\n------------------\n0.3.0 (2015-09-28)\n------------------\n* Several new histdd functions: cumulate, normalize, percentile...\n* Python 2 compatibility\n\n------------------\n0.2.1 (2015-08-18)\n------------------\n* Histdd functions sum, slice, average now also work\n\n----------------\n0.2 (2015-08-06)\n----------------\n* Multidimensional histograms\n* Axes naming\n\n--------------------\n0.1.1-4 (2015-08-04)\n--------------------\nCorrect various rookie mistakes in packaging...\nHey, it's my first pypi package!\n\n----------------\n0.1 (2015-08-04)\n----------------\nInitial release\n\n* Hist1d, Hist2d\n* Basic test suite\n* Basic readme\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Convenience wrappers around numpy histograms",
    "version": "0.6.5",
    "split_keywords": [
        "multihist",
        "histogram"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "57c22febb099929db74cd1cd5951fd86",
                "sha256": "f5fcce0712706c99a462cb19580fc37ffc1a6665e490a841705ea1b9d029edf9"
            },
            "downloads": -1,
            "filename": "multihist-0.6.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "57c22febb099929db74cd1cd5951fd86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 14595,
            "upload_time": "2022-01-27T04:09:05",
            "upload_time_iso_8601": "2022-01-27T04:09:05.303189Z",
            "url": "https://files.pythonhosted.org/packages/8b/81/6a9848217ca43ef6930c9ec8abde2e0d8a40c4078875cb26799b185ef82f/multihist-0.6.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "e411fd3cb227d2bc0066dcb1248c280f",
                "sha256": "020e88693228d50b23b77fd59f2e998de8b1d7517f5697cec4d4616d7d011cdd"
            },
            "downloads": -1,
            "filename": "multihist-0.6.5.tar.gz",
            "has_sig": false,
            "md5_digest": "e411fd3cb227d2bc0066dcb1248c280f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 16661,
            "upload_time": "2022-01-27T04:09:07",
            "upload_time_iso_8601": "2022-01-27T04:09:07.219721Z",
            "url": "https://files.pythonhosted.org/packages/73/df/bcbe4c72f03c4cb0f550329d6148628fe1f81f7da95d3c2afb867fb437f4/multihist-0.6.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-01-27 04:09:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "jelleaalbers",
    "github_project": "multihist",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        }
    ],
    "lcname": "multihist"
}
        
Elapsed time: 0.02497s