# NakaMetPy
[![PyPI version][pypi-image]][pypi-link]
[![Anaconda version][anaconda-v-image]][anaconda-v-link]
[![pytest][github-actions-image]][github-actions-link]
[pypi-image]: https://badge.fury.io/py/nakametpy.svg
[pypi-link]: https://pypi.org/project/nakametpy
[anaconda-v-image]: https://anaconda.org/muchiwo/nakametpy/badges/version.svg
[anaconda-v-link]: https://anaconda.org/muchiwo/nakametpy
[github-actions-image]: https://github.com/muchojp/NakaMetPy/actions/workflows/ci.yml/badge.svg
[github-actions-link]: https://github.com/muchojp/NakaMetPy/actions/workflows/ci.yml
## Documentation
ドキュメンテーションは[こちら](https://muchojp.github.io/NakaMetPy/ "Docs")のページにあります.Documentation is [HERE](https://muchojp.github.io/NakaMetPy/).
## 概要
**POINT1**:気象庁のレーダーエコー強度・エコー頂高度・解析雨量を読む関数があります(`util`).
- 2.5kmメッシュエコー強度/5kmエコー頂高度
- 1kmメッシュエコー強度/2.5kmエコー頂高度
- 1kmエコー頂高度
- 250mメッシュエコー強度
また簡単な単位変換や配列の結合、文字列<>日付の変換を行う関数などがあります(`util`).
**POINT2**:BUFRファイルを読む関数があります(`bufr`).
**POINT3**:GrADSや気象庁が利用しているカラーマップがあります(`cmaps`).
**POINT4**:GrADSバイナリを読む関数があります(`grads`).
**POINT5**:MetPyの関数がNumPyで動作するように書き換えた関数があります
まだMetPyのバージョンが0.xだったときに作成したものです.
気象データをNumPyでベクトル(配列)として扱うことを想定しています.
そのためMetPyとは異なり単位に気をつけてる必要があります.
また関数の鉛直層数および時間のサイズは適当に与えています.利用時にデータに合わせて引数で指定する必要があります.
さらにWRFの計算結果を入力する場合は`wrfon`のオプションを1にする必要があります.
なお`wrfon`オプションは使い勝手が悪いため、今後廃止を検討中です.
皆さまのContributionもお待ちしています.
## Abstract
NakaMetPy provide function
- to read JMA (Japan Meteorological Agency) Radar Echo Intensity/ Echo Top-height/ Radar/Raingauge-analyzed precipitation data (`util`)
- to convert unit, concat array and convert string into datetime, ... etc (`util`)
- to read BUFR data (`bufr`)
- Colormap of **GrADS** and **JMA** (`cmaps`)
- to read GrADS binary (`grads`)
- rewrited function of `MetPy` using `NumPy`(`kinematics` and `thermo`)
I appreciate your contribution.
## How to Install
### via Anaconda
```
conda install muchiwo::nakametpy
```
### via PyPI
```
pip3 install nakametpy
```
## Licence
`BSD-3-Clause`
## Citation
```
Nakamura, Y. (2024). NakaMety (Version xxxx.x.x) [Software]. Chiba, Japan. https://github.com/muchojp/NakaMetPy
```
**Note**: The version number xxxx.x.x should be set to the version of NakaMetPy that you are using.
## Update plans
Next(`2024.x.0` or later):
- No planned
To Do:
- `wrfon`オプションの廃止
- MetPyの関数の移植 \[Further addition of MetPy function\]
- NCLに実装されている関数の移植 \[adding the NCL's function\]
- 方位角平均を取る関数の作成 \[Add function of Azimuthal Mean\]
Raw data
{
"_id": null,
"home_page": "https://github.com/muchojp/NakaMetPy",
"name": "nakametpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7.0",
"maintainer_email": null,
"keywords": null,
"author": "muchojp",
"author_email": "contact.muchiwo@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/72/ac/b06cc620e289fa93a168bfb26b2f87c7e23472b58ef879081a0b6831cb0b/nakametpy-2025.1.0.tar.gz",
"platform": null,
"description": "# NakaMetPy\r\n\r\n[![PyPI version][pypi-image]][pypi-link]\r\n[![Anaconda version][anaconda-v-image]][anaconda-v-link]\r\n[![pytest][github-actions-image]][github-actions-link]\r\n\r\n[pypi-image]: https://badge.fury.io/py/nakametpy.svg\r\n[pypi-link]: https://pypi.org/project/nakametpy\r\n[anaconda-v-image]: https://anaconda.org/muchiwo/nakametpy/badges/version.svg\r\n[anaconda-v-link]: https://anaconda.org/muchiwo/nakametpy\r\n[github-actions-image]: https://github.com/muchojp/NakaMetPy/actions/workflows/ci.yml/badge.svg\r\n[github-actions-link]: https://github.com/muchojp/NakaMetPy/actions/workflows/ci.yml\r\n\r\n## Documentation\r\n\u30c9\u30ad\u30e5\u30e1\u30f3\u30c6\u30fc\u30b7\u30e7\u30f3\u306f[\u3053\u3061\u3089](https://muchojp.github.io/NakaMetPy/ \"Docs\")\u306e\u30da\u30fc\u30b8\u306b\u3042\u308a\u307e\u3059.Documentation is [HERE](https://muchojp.github.io/NakaMetPy/).\r\n\r\n## \u6982\u8981\r\n**POINT1**\uff1a\u6c17\u8c61\u5e81\u306e\u30ec\u30fc\u30c0\u30fc\u30a8\u30b3\u30fc\u5f37\u5ea6\u30fb\u30a8\u30b3\u30fc\u9802\u9ad8\u5ea6\u30fb\u89e3\u6790\u96e8\u91cf\u3092\u8aad\u3080\u95a2\u6570\u304c\u3042\u308a\u307e\u3059(`util`).\r\n- 2.5km\u30e1\u30c3\u30b7\u30e5\u30a8\u30b3\u30fc\u5f37\u5ea6/5km\u30a8\u30b3\u30fc\u9802\u9ad8\u5ea6\r\n- 1km\u30e1\u30c3\u30b7\u30e5\u30a8\u30b3\u30fc\u5f37\u5ea6/2.5km\u30a8\u30b3\u30fc\u9802\u9ad8\u5ea6\r\n- 1km\u30a8\u30b3\u30fc\u9802\u9ad8\u5ea6\r\n- 250m\u30e1\u30c3\u30b7\u30e5\u30a8\u30b3\u30fc\u5f37\u5ea6\r\n\r\n\u307e\u305f\u7c21\u5358\u306a\u5358\u4f4d\u5909\u63db\u3084\u914d\u5217\u306e\u7d50\u5408\u3001\u6587\u5b57\u5217<>\u65e5\u4ed8\u306e\u5909\u63db\u3092\u884c\u3046\u95a2\u6570\u306a\u3069\u304c\u3042\u308a\u307e\u3059(`util`).\r\n\r\n**POINT2**\uff1aBUFR\u30d5\u30a1\u30a4\u30eb\u3092\u8aad\u3080\u95a2\u6570\u304c\u3042\u308a\u307e\u3059(`bufr`).\r\n\r\n**POINT3**\uff1aGrADS\u3084\u6c17\u8c61\u5e81\u304c\u5229\u7528\u3057\u3066\u3044\u308b\u30ab\u30e9\u30fc\u30de\u30c3\u30d7\u304c\u3042\u308a\u307e\u3059(`cmaps`).\r\n\r\n**POINT4**\uff1aGrADS\u30d0\u30a4\u30ca\u30ea\u3092\u8aad\u3080\u95a2\u6570\u304c\u3042\u308a\u307e\u3059(`grads`).\r\n\r\n**POINT5**\uff1aMetPy\u306e\u95a2\u6570\u304cNumPy\u3067\u52d5\u4f5c\u3059\u308b\u3088\u3046\u306b\u66f8\u304d\u63db\u3048\u305f\u95a2\u6570\u304c\u3042\u308a\u307e\u3059\r\n\r\n\u307e\u3060MetPy\u306e\u30d0\u30fc\u30b8\u30e7\u30f3\u304c0.x\u3060\u3063\u305f\u3068\u304d\u306b\u4f5c\u6210\u3057\u305f\u3082\u306e\u3067\u3059.\r\n\u6c17\u8c61\u30c7\u30fc\u30bf\u3092NumPy\u3067\u30d9\u30af\u30c8\u30eb(\u914d\u5217)\u3068\u3057\u3066\u6271\u3046\u3053\u3068\u3092\u60f3\u5b9a\u3057\u3066\u3044\u307e\u3059.\r\n\u305d\u306e\u305f\u3081MetPy\u3068\u306f\u7570\u306a\u308a\u5358\u4f4d\u306b\u6c17\u3092\u3064\u3051\u3066\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059.\r\n\u307e\u305f\u95a2\u6570\u306e\u925b\u76f4\u5c64\u6570\u304a\u3088\u3073\u6642\u9593\u306e\u30b5\u30a4\u30ba\u306f\u9069\u5f53\u306b\u4e0e\u3048\u3066\u3044\u307e\u3059.\u5229\u7528\u6642\u306b\u30c7\u30fc\u30bf\u306b\u5408\u308f\u305b\u3066\u5f15\u6570\u3067\u6307\u5b9a\u3059\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059.\r\n\u3055\u3089\u306bWRF\u306e\u8a08\u7b97\u7d50\u679c\u3092\u5165\u529b\u3059\u308b\u5834\u5408\u306f`wrfon`\u306e\u30aa\u30d7\u30b7\u30e7\u30f3\u30921\u306b\u3059\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059.\r\n\u306a\u304a`wrfon`\u30aa\u30d7\u30b7\u30e7\u30f3\u306f\u4f7f\u3044\u52dd\u624b\u304c\u60aa\u3044\u305f\u3081\u3001\u4eca\u5f8c\u5ec3\u6b62\u3092\u691c\u8a0e\u4e2d\u3067\u3059.\r\n\r\n\u7686\u3055\u307e\u306eContribution\u3082\u304a\u5f85\u3061\u3057\u3066\u3044\u307e\u3059.\r\n\r\n## Abstract\r\nNakaMetPy provide function\r\n- to read JMA (Japan Meteorological Agency) Radar Echo Intensity/ Echo Top-height/ Radar/Raingauge-analyzed precipitation data (`util`)\r\n- to convert unit, concat array and convert string into datetime, ... etc (`util`)\r\n- to read BUFR data (`bufr`)\r\n- Colormap of **GrADS** and **JMA** (`cmaps`)\r\n- to read GrADS binary (`grads`)\r\n- rewrited function of `MetPy` using `NumPy`(`kinematics` and `thermo`)\r\n\r\nI appreciate your contribution.\r\n\r\n## How to Install\r\n### via Anaconda\r\n\r\n```\r\nconda install muchiwo::nakametpy\r\n```\r\n\r\n### via PyPI\r\n\r\n```\r\npip3 install nakametpy\r\n```\r\n\r\n## Licence\r\n`BSD-3-Clause`\r\n\r\n## Citation\r\n```\r\nNakamura, Y. (2024). NakaMety (Version xxxx.x.x) [Software]. Chiba, Japan. https://github.com/muchojp/NakaMetPy\r\n```\r\n**Note**: The version number xxxx.x.x should be set to the version of NakaMetPy that you are using.\r\n\r\n## Update plans\r\nNext(`2024.x.0` or later):\r\n - No planned\r\n\r\nTo Do: \r\n - `wrfon`\u30aa\u30d7\u30b7\u30e7\u30f3\u306e\u5ec3\u6b62\r\n - MetPy\u306e\u95a2\u6570\u306e\u79fb\u690d \\[Further addition of MetPy function\\]\r\n - NCL\u306b\u5b9f\u88c5\u3055\u308c\u3066\u3044\u308b\u95a2\u6570\u306e\u79fb\u690d \\[adding the NCL's function\\]\r\n - \u65b9\u4f4d\u89d2\u5e73\u5747\u3092\u53d6\u308b\u95a2\u6570\u306e\u4f5c\u6210 \\[Add function of Azimuthal Mean\\]\r\n\r\n",
"bugtrack_url": null,
"license": "BSD 3-clause",
"summary": "Meteorological modules for calculation and colormap.",
"version": "2025.1.0",
"project_urls": {
"Homepage": "https://github.com/muchojp/NakaMetPy"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1110d15c6cc4594e77a8f586bccc4d22d4246dfa213b72f1a70ba094a82119ea",
"md5": "8fcf16d3a7bab18f28adae09e307f583",
"sha256": "50ea521c233be111d1aeddbf83e9da911291e8bdc3971bbce3c53fa0c299faa6"
},
"downloads": -1,
"filename": "nakametpy-2025.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8fcf16d3a7bab18f28adae09e307f583",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7.0",
"size": 54360,
"upload_time": "2025-01-25T02:04:21",
"upload_time_iso_8601": "2025-01-25T02:04:21.742171Z",
"url": "https://files.pythonhosted.org/packages/11/10/d15c6cc4594e77a8f586bccc4d22d4246dfa213b72f1a70ba094a82119ea/nakametpy-2025.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "72acb06cc620e289fa93a168bfb26b2f87c7e23472b58ef879081a0b6831cb0b",
"md5": "a7fb1502b1f471b38b9d8797e32a821d",
"sha256": "a3a07a405f759448b922cccc2549258fed7c6a688786a83155a5f1373ba26870"
},
"downloads": -1,
"filename": "nakametpy-2025.1.0.tar.gz",
"has_sig": false,
"md5_digest": "a7fb1502b1f471b38b9d8797e32a821d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7.0",
"size": 58919,
"upload_time": "2025-01-25T02:04:24",
"upload_time_iso_8601": "2025-01-25T02:04:24.009661Z",
"url": "https://files.pythonhosted.org/packages/72/ac/b06cc620e289fa93a168bfb26b2f87c7e23472b58ef879081a0b6831cb0b/nakametpy-2025.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-25 02:04:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "muchojp",
"github_project": "NakaMetPy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"<=",
"1.21.1"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.21.3"
],
[
"<",
"1.22.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"<",
"1.25.0"
],
[
">=",
"1.21.3"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.26.4"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.3.0"
]
]
},
{
"name": "pandas",
"specs": [
[
"<=",
"1.1.5"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.0.0"
]
]
}
],
"lcname": "nakametpy"
}