nbi-stat


Namenbi-stat JSON
Version 0.8.5 PyPI version JSON
download
home_pagehttps://cholmcc.gitlab.io/nbi-python/statistics/#Statistik
SummaryStatistics tools for teaching at NBI
upload_time2024-02-22 18:21:56
maintainer
docs_urlNone
authorChristian Holm Christensen
requires_python>=3.6
licenseGPL
keywords niels bohr institute physics statistics fitting rounding histogram random distribution visualizing tabulating
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Statistical tools for teaching at NBI 

This package extends some of the existing tools in
[_NumPy_](https://numpy.org) and [_SciPy_](https://scipy.org) with
some useful features designed to make life easier for the students at
the Niels Bohr Institute. 

## Topics

- Reporting scientific results, including proper rounding 
- Tabulation of data useful in Jupyter Notebooks 
- Visualisation of data in 1 and many dimensions 
- Robust calculations of sample means, variances, and covariances, for
  unweighted and weighted samples.  For weighted samples, both
  _frequency_ and _non_-frequency weights are supported. 
- Histogramming 
- Sampling of arbitrary PDFs 
- Curve fitting using 
  - Linear least squares 
  - Non-linear least squares 
  - Maximum likelihood estimates 
    - Extended 
    - Binned 
- Representation of fit confidence contours 
- Hyppthesis testing 
- Confidence intervals 
- Template fitting 
- Simultaneous fitting over regions (channels)
- Likelihood calculations 

## Examples of use 

[This
notebook](https://cholmcc.gitlab.io/nbi-python/statistics/#nbi_stat_exa)
gives examples of use. 

## Book on Statistics with Python 

The book [Statistics Overview - With
Python](https://cholmcc.gitlab.io/nbi-python/statistics/#Statistik)
lays out much of the theoretical foundation for the tools available. 

Some other notes on statistics is available from the same site, including 

- [Principle Component Analysis](https://cholmcc.gitlab.io/nbi-python/statistics/#PCA) as a more robust alternative to boosted decision trees 
- [Bootstrap and Jackknife](https://cholmcc.gitlab.io/nbi-python/statistics/#Boostrap) and why you should be careful with these estimates 
- [Coefficent of determination](https://cholmcc.gitlab.io/nbi-python/statistics/#R2) and why you shouldn't use it 

## Application Programming Interface Documentation 

The API is
[documented](https://cholmcc.gitlab.io/nbi-python/statistics/nbi_stat). 

2019 © _Christian Holm Christensen_

            

Raw data

            {
    "_id": null,
    "home_page": "https://cholmcc.gitlab.io/nbi-python/statistics/#Statistik",
    "name": "nbi-stat",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Niels Bohr Institute,Physics,Statistics,Fitting,Rounding,Histogram,Random distribution,Visualizing,Tabulating",
    "author": "Christian Holm Christensen",
    "author_email": "cholmcc@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a2/1d/c04a2401931e1c0d410383cd02577e3993d3c90e160cdbb6640ff2fe4a22/nbi_stat-0.8.5.tar.gz",
    "platform": null,
    "description": "# Statistical tools for teaching at NBI \n\nThis package extends some of the existing tools in\n[_NumPy_](https://numpy.org) and [_SciPy_](https://scipy.org) with\nsome useful features designed to make life easier for the students at\nthe Niels Bohr Institute. \n\n## Topics\n\n- Reporting scientific results, including proper rounding \n- Tabulation of data useful in Jupyter Notebooks \n- Visualisation of data in 1 and many dimensions \n- Robust calculations of sample means, variances, and covariances, for\n  unweighted and weighted samples.  For weighted samples, both\n  _frequency_ and _non_-frequency weights are supported. \n- Histogramming \n- Sampling of arbitrary PDFs \n- Curve fitting using \n  - Linear least squares \n  - Non-linear least squares \n  - Maximum likelihood estimates \n    - Extended \n    - Binned \n- Representation of fit confidence contours \n- Hyppthesis testing \n- Confidence intervals \n- Template fitting \n- Simultaneous fitting over regions (channels)\n- Likelihood calculations \n\n## Examples of use \n\n[This\nnotebook](https://cholmcc.gitlab.io/nbi-python/statistics/#nbi_stat_exa)\ngives examples of use. \n\n## Book on Statistics with Python \n\nThe book [Statistics Overview - With\nPython](https://cholmcc.gitlab.io/nbi-python/statistics/#Statistik)\nlays out much of the theoretical foundation for the tools available. \n\nSome other notes on statistics is available from the same site, including \n\n- [Principle Component Analysis](https://cholmcc.gitlab.io/nbi-python/statistics/#PCA) as a more robust alternative to boosted decision trees \n- [Bootstrap and Jackknife](https://cholmcc.gitlab.io/nbi-python/statistics/#Boostrap) and why you should be careful with these estimates \n- [Coefficent of determination](https://cholmcc.gitlab.io/nbi-python/statistics/#R2) and why you shouldn't use it \n\n## Application Programming Interface Documentation \n\nThe API is\n[documented](https://cholmcc.gitlab.io/nbi-python/statistics/nbi_stat). \n\n2019 \u00a9 _Christian Holm Christensen_\n",
    "bugtrack_url": null,
    "license": "GPL",
    "summary": "Statistics tools for teaching at NBI",
    "version": "0.8.5",
    "project_urls": {
        "Documentation": "https://cholmcc.gitlab.io/nbi-python/statistics/nbi_stat",
        "Homepage": "https://cholmcc.gitlab.io/nbi-python/statistics/#Statistik",
        "Source Code": "https://gitlab.com/cholmcc/nbi-python"
    },
    "split_keywords": [
        "niels bohr institute",
        "physics",
        "statistics",
        "fitting",
        "rounding",
        "histogram",
        "random distribution",
        "visualizing",
        "tabulating"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea936c2442b2e322c4313392318501082bc83276f1c4c65127a34f1961c1bd88",
                "md5": "5829ae147436752dc6016c07c887984f",
                "sha256": "db2cc99e658430180a28c952414b591d115e3724fa29578d84fd4793d62d1312"
            },
            "downloads": -1,
            "filename": "nbi_stat-0.8.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5829ae147436752dc6016c07c887984f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 56051,
            "upload_time": "2024-02-22T18:21:54",
            "upload_time_iso_8601": "2024-02-22T18:21:54.159812Z",
            "url": "https://files.pythonhosted.org/packages/ea/93/6c2442b2e322c4313392318501082bc83276f1c4c65127a34f1961c1bd88/nbi_stat-0.8.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a21dc04a2401931e1c0d410383cd02577e3993d3c90e160cdbb6640ff2fe4a22",
                "md5": "28175b4fa56bb414d575cbdea321a1dc",
                "sha256": "98d055c9b9f2b4eb8bd14ce6dce669d511e5647f51c7d0bd855401ab4e5f93f9"
            },
            "downloads": -1,
            "filename": "nbi_stat-0.8.5.tar.gz",
            "has_sig": false,
            "md5_digest": "28175b4fa56bb414d575cbdea321a1dc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 56943,
            "upload_time": "2024-02-22T18:21:56",
            "upload_time_iso_8601": "2024-02-22T18:21:56.422349Z",
            "url": "https://files.pythonhosted.org/packages/a2/1d/c04a2401931e1c0d410383cd02577e3993d3c90e160cdbb6640ff2fe4a22/nbi_stat-0.8.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-22 18:21:56",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "cholmcc",
    "gitlab_project": "nbi-python",
    "lcname": "nbi-stat"
}
        
Elapsed time: 0.66918s