new-ai-benchmark


Namenew-ai-benchmark JSON
Version 2.7.0 PyPI version JSON
download
home_page
SummaryAI Benchmark is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs.
upload_time2024-03-10 18:53:48
maintainer
docs_urlNone
author
requires_python
licenseMIT License
keywords ai benchmark tensorflow machine learning inference training
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
[AI Benchmark Alpha](http://ai-benchmark.com/alpha) is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on [TensorFlow](https://www.tensorflow.org) machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.</br></br>

In total, AI Benchmark consists of <b>42 tests</b> and <b>19 sections</b> provided below:</br>

1. MobileNet-V2&nbsp; `[classification]`
2. Inception-V3&nbsp; `[classification]`
3. Inception-V4&nbsp; `[classification]`
4. Inception-ResNet-V2&nbsp; `[classification]`
5. ResNet-V2-50&nbsp; `[classification]`
6. ResNet-V2-152&nbsp; `[classification]`
7. VGG-16&nbsp; `[classification]`
8. SRCNN 9-5-5&nbsp; `[image-to-image mapping]`
9. VGG-19&nbsp; `[image-to-image mapping]`
10. ResNet-SRGAN&nbsp; `[image-to-image mapping]`
11. ResNet-DPED&nbsp; `[image-to-image mapping]`
12. U-Net&nbsp; `[image-to-image mapping]`
13. Nvidia-SPADE&nbsp; `[image-to-image mapping]`
14. ICNet&nbsp; `[image segmentation]`
15. PSPNet&nbsp; `[image segmentation]`
16. DeepLab&nbsp; `[image segmentation]`
17. Pixel-RNN&nbsp; `[inpainting]`
18. LSTM&nbsp; `[sentence sentiment analysis]`
19. GNMT&nbsp; `[text translation]`

For more information and results, please visit the project website: [http://ai-benchmark.com/alpha](http://ai-benchmark.com/alpha)</br></br>

#### Installation Instructions </br>

The benchmark requires TensorFlow machine learning library to be present in your system.

On systems that <b>do not have Nvidia GPUs</b>, run the following commands to install AI Benchmark:

```bash
pip install tensorflow
pip install ai-benchmark
```
</br>

If you want to check the <b>performance of Nvidia graphic cards</b>, run the following commands:

```bash
pip install tensorflow-gpu
pip install ai-benchmark
```

<b>`Note 1:`</b> If Tensorflow is already installed in your system, you can skip the first command.

<b>`Note 2:`</b> For running the benchmark on Nvidia GPUs, <b>`NVIDIA CUDA`</b> and <b>`cuDNN`</b> libraries should be installed first. Please find detailed instructions [here](https://www.tensorflow.org/install/gpu). </br></br>

#### Getting Started </br>

To run AI Benchmark, use the following code:

```bash
from ai_benchmark import AIBenchmark
benchmark = AIBenchmark()
results = benchmark.run()
```

Alternatively, on Linux systems you can type `ai-benchmark` in the command line to start the tests.

To run inference or training only, use `benchmark.run_inference()` or `benchmark.run_training()`. </br></br>

#### Advanced settings </br>

```bash
AIBenchmark(use_CPU=None, verbose_level=1):
```
> use_CPU=`{True, False, None}`:&nbsp;&nbsp; whether to run the tests on CPUs&nbsp; (if tensorflow-gpu is installed)

> verbose_level=`{0, 1, 2, 3}`:&nbsp;&nbsp; run tests silently | with short summary | with information about each run | with TF logs

```bash
benchmark.run(precision="normal"):
```

> precision=`{"normal", "high"}`:&nbsp;&nbsp; if `high` is selected, the benchmark will execute 10 times more runs for each test.

</br>

### Additional Notes and Requirements </br>

GPU with at least 2GB of RAM is required for running inference tests / 4GB of RAM for training tests.

The benchmark is compatible with both `TensorFlow 1.x` and `2.x` versions. </br></br>

### Contacts </br>

Please contact `andrey@vision.ee.ethz.ch` for any feedback or information.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "new-ai-benchmark",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "Johnny N\u00fa\u00f1ez <jnunezca11@alumnes.ub.edu>",
    "keywords": "AI,Benchmark,Tensorflow,Machine Learning,Inference,Training",
    "author": "",
    "author_email": "Andrey Ignatov <andrey@vision.ee.ethz.ch>",
    "download_url": "",
    "platform": null,
    "description": "\n[AI Benchmark Alpha](http://ai-benchmark.com/alpha) is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on [TensorFlow](https://www.tensorflow.org) machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.</br></br>\n\nIn total, AI Benchmark consists of <b>42 tests</b> and <b>19 sections</b> provided below:</br>\n\n1. MobileNet-V2&nbsp; `[classification]`\n2. Inception-V3&nbsp; `[classification]`\n3. Inception-V4&nbsp; `[classification]`\n4. Inception-ResNet-V2&nbsp; `[classification]`\n5. ResNet-V2-50&nbsp; `[classification]`\n6. ResNet-V2-152&nbsp; `[classification]`\n7. VGG-16&nbsp; `[classification]`\n8. SRCNN 9-5-5&nbsp; `[image-to-image mapping]`\n9. VGG-19&nbsp; `[image-to-image mapping]`\n10. ResNet-SRGAN&nbsp; `[image-to-image mapping]`\n11. ResNet-DPED&nbsp; `[image-to-image mapping]`\n12. U-Net&nbsp; `[image-to-image mapping]`\n13. Nvidia-SPADE&nbsp; `[image-to-image mapping]`\n14. ICNet&nbsp; `[image segmentation]`\n15. PSPNet&nbsp; `[image segmentation]`\n16. DeepLab&nbsp; `[image segmentation]`\n17. Pixel-RNN&nbsp; `[inpainting]`\n18. LSTM&nbsp; `[sentence sentiment analysis]`\n19. GNMT&nbsp; `[text translation]`\n\nFor more information and results, please visit the project website: [http://ai-benchmark.com/alpha](http://ai-benchmark.com/alpha)</br></br>\n\n#### Installation Instructions </br>\n\nThe benchmark requires TensorFlow machine learning library to be present in your system.\n\nOn systems that <b>do not have Nvidia GPUs</b>, run the following commands to install AI Benchmark:\n\n```bash\npip install tensorflow\npip install ai-benchmark\n```\n</br>\n\nIf you want to check the <b>performance of Nvidia graphic cards</b>, run the following commands:\n\n```bash\npip install tensorflow-gpu\npip install ai-benchmark\n```\n\n<b>`Note 1:`</b> If Tensorflow is already installed in your system, you can skip the first command.\n\n<b>`Note 2:`</b> For running the benchmark on Nvidia GPUs, <b>`NVIDIA CUDA`</b> and <b>`cuDNN`</b> libraries should be installed first. Please find detailed instructions [here](https://www.tensorflow.org/install/gpu). </br></br>\n\n#### Getting Started </br>\n\nTo run AI Benchmark, use the following code:\n\n```bash\nfrom ai_benchmark import AIBenchmark\nbenchmark = AIBenchmark()\nresults = benchmark.run()\n```\n\nAlternatively, on Linux systems you can type `ai-benchmark` in the command line to start the tests.\n\nTo run inference or training only, use `benchmark.run_inference()` or `benchmark.run_training()`. </br></br>\n\n#### Advanced settings </br>\n\n```bash\nAIBenchmark(use_CPU=None, verbose_level=1):\n```\n> use_CPU=`{True, False, None}`:&nbsp;&nbsp; whether to run the tests on CPUs&nbsp; (if tensorflow-gpu is installed)\n\n> verbose_level=`{0, 1, 2, 3}`:&nbsp;&nbsp; run tests silently | with short summary | with information about each run | with TF logs\n\n```bash\nbenchmark.run(precision=\"normal\"):\n```\n\n> precision=`{\"normal\", \"high\"}`:&nbsp;&nbsp; if `high` is selected, the benchmark will execute 10 times more runs for each test.\n\n</br>\n\n### Additional Notes and Requirements </br>\n\nGPU with at least 2GB of RAM is required for running inference tests / 4GB of RAM for training tests.\n\nThe benchmark is compatible with both `TensorFlow 1.x` and `2.x` versions. </br></br>\n\n### Contacts </br>\n\nPlease contact `andrey@vision.ee.ethz.ch` for any feedback or information.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "AI Benchmark is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs.",
    "version": "2.7.0",
    "project_urls": null,
    "split_keywords": [
        "ai",
        "benchmark",
        "tensorflow",
        "machine learning",
        "inference",
        "training"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "92d2dc67ec7c27085e2da5c140f663cf17efb0eb39347d9f595bd1be55a2d71e",
                "md5": "cb656b27759d7f5d9511a992558b9c0f",
                "sha256": "bf1dc6b9356352945bf77a910d968f87eb3da73baeebb42e2b16917b712b3148"
            },
            "downloads": -1,
            "filename": "new_ai_benchmark-2.7.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cb656b27759d7f5d9511a992558b9c0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21548864,
            "upload_time": "2024-03-10T18:53:48",
            "upload_time_iso_8601": "2024-03-10T18:53:48.619344Z",
            "url": "https://files.pythonhosted.org/packages/92/d2/dc67ec7c27085e2da5c140f663cf17efb0eb39347d9f595bd1be55a2d71e/new_ai_benchmark-2.7.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-10 18:53:48",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "new-ai-benchmark"
}
        
Elapsed time: 9.10610s