Nimfa
-----
[](https://travis-ci.org/marinkaz/nimfa)
[](https://coveralls.io/github/marinkaz/nimfa?branch=master)
[](https://GitHub.com/marinkaz/nimfa/releases/)
[](https://opensource.org/licenses/BSD-3-Clause)
Nimfa is a Python module that implements many algorithms for nonnegative matrix factorization. Nimfa is distributed under the BSD license.
The project was started in 2011 by Marinka Zitnik as a Google Summer of Code project, and since
then many volunteers have contributed. See AUTHORS file for a complete list of contributors.
It is currently maintained by a team of volunteers.
Important links
---------------
- Official source code repo: https://github.com/marinkaz/nimfa
- HTML documentation (stable release): http://ai.stanford.edu/~marinka/nimfa
- Download releases: http://github.com/marinkaz/nimfa/releases
- Issue tracker: http://github.com/marinkaz/nimfa/issues
Dependencies
------------
Nimfa is tested to work under Python 2.7 and Python 3.4.
The required dependencies to build the software are NumPy >= 1.7.0,
SciPy >= 0.12.0.
For running the examples Matplotlib >= 1.1.1 is required.
Install
-------
This package uses setuptools, which is a common way of installing
python modules. To install in your home directory, use:
python setup.py install --user
To install for all users on Unix/Linux:
sudo python setup.py install
For more detailed installation instructions,
see the web page http://ai.stanford.edu/~marinka/nimfa
Use
---
Run alternating least squares nonnegative matrix factorization with projected gradients and Random Vcol initialization algorithm on medulloblastoma gene expression data::
>>> import nimfa
>>> V = nimfa.examples.medulloblastoma.read(normalize=True)
>>> lsnmf = nimfa.Lsnmf(V, seed='random_vcol', rank=50, max_iter=100)
>>> lsnmf_fit = lsnmf()
>>> print('Rss: %5.4f' % lsnmf_fit.fit.rss())
Rss: 0.2668
>>> print('Evar: %5.4f' % lsnmf_fit.fit.evar())
Evar: 0.9997
>>> print('K-L divergence: %5.4f' % lsnmf_fit.distance(metric='kl'))
K-L divergence: 38.8744
>>> print('Sparseness, W: %5.4f, H: %5.4f' % lsnmf_fit.fit.sparseness())
Sparseness, W: 0.7297, H: 0.8796
Cite
----
@article{Zitnik2012,
title = {Nimfa: A Python Library for Nonnegative Matrix Factorization},
author = {Zitnik, Marinka and Zupan, Blaz},
journal = {Journal of Machine Learning Research},
volume = {13},
pages = {849-853},
year = {2012}
}
Raw data
{
"_id": null,
"home_page": "http://nimfa.biolab.si",
"name": "nimfa",
"maintainer": "Marinka Zitnik",
"docs_url": null,
"requires_python": "",
"maintainer_email": "marinka@cs.stanford.edu",
"keywords": "matrix factorization,nonnegative matrix factorization,bioinformatics,data mining,machine learning",
"author": "Marinka Zitnik",
"author_email": "marinka@cs.stanford.edu",
"download_url": "https://files.pythonhosted.org/packages/42/81/c07af372792380f402c1784cb7e1b9e77e4a9b706eddf6b6f2a8387a0db0/nimfa-1.4.0.tar.gz",
"platform": "",
"description": "Nimfa\n-----\n\n[](https://travis-ci.org/marinkaz/nimfa)\n[](https://coveralls.io/github/marinkaz/nimfa?branch=master)\n[](https://GitHub.com/marinkaz/nimfa/releases/)\n[](https://opensource.org/licenses/BSD-3-Clause)\n\nNimfa is a Python module that implements many algorithms for nonnegative matrix factorization. Nimfa is distributed under the BSD license.\n\nThe project was started in 2011 by Marinka Zitnik as a Google Summer of Code project, and since\nthen many volunteers have contributed. See AUTHORS file for a complete list of contributors.\n\nIt is currently maintained by a team of volunteers.\n\nImportant links\n---------------\n\n- Official source code repo: https://github.com/marinkaz/nimfa\n- HTML documentation (stable release): http://ai.stanford.edu/~marinka/nimfa\n- Download releases: http://github.com/marinkaz/nimfa/releases\n- Issue tracker: http://github.com/marinkaz/nimfa/issues\n\nDependencies\n------------\n\nNimfa is tested to work under Python 2.7 and Python 3.4.\n\nThe required dependencies to build the software are NumPy >= 1.7.0,\nSciPy >= 0.12.0.\n\nFor running the examples Matplotlib >= 1.1.1 is required.\n\nInstall\n-------\n\nThis package uses setuptools, which is a common way of installing\npython modules. To install in your home directory, use:\n\n python setup.py install --user\n\nTo install for all users on Unix/Linux:\n\n sudo python setup.py install\n\nFor more detailed installation instructions,\nsee the web page http://ai.stanford.edu/~marinka/nimfa\n\nUse\n---\n\nRun alternating least squares nonnegative matrix factorization with projected gradients and Random Vcol initialization algorithm on medulloblastoma gene expression data::\n\n >>> import nimfa\n >>> V = nimfa.examples.medulloblastoma.read(normalize=True)\n >>> lsnmf = nimfa.Lsnmf(V, seed='random_vcol', rank=50, max_iter=100)\n >>> lsnmf_fit = lsnmf()\n >>> print('Rss: %5.4f' % lsnmf_fit.fit.rss())\n Rss: 0.2668\n >>> print('Evar: %5.4f' % lsnmf_fit.fit.evar())\n Evar: 0.9997\n >>> print('K-L divergence: %5.4f' % lsnmf_fit.distance(metric='kl'))\n K-L divergence: 38.8744\n >>> print('Sparseness, W: %5.4f, H: %5.4f' % lsnmf_fit.fit.sparseness())\n Sparseness, W: 0.7297, H: 0.8796\n\n\nCite\n----\n\n @article{Zitnik2012,\n title = {Nimfa: A Python Library for Nonnegative Matrix Factorization},\n author = {Zitnik, Marinka and Zupan, Blaz},\n journal = {Journal of Machine Learning Research},\n volume = {13},\n pages = {849-853},\n year = {2012}\n }\n\n\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "A Python module for nonnegative matrix factorization",
"version": "1.4.0",
"project_urls": {
"Download": "http://github.com/marinkaz/nimfa",
"Homepage": "http://nimfa.biolab.si"
},
"split_keywords": [
"matrix factorization",
"nonnegative matrix factorization",
"bioinformatics",
"data mining",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "75e31f5626e07fa38b9fd5bf92c018b97e8dd4eec69dd6284b1294fd46873e66",
"md5": "c74c3c0ce972060b9ee6100a61940a99",
"sha256": "d9f2e1419c94524cec79e8d19291180707a2052ac2e25284edaba235d1575451"
},
"downloads": -1,
"filename": "nimfa-1.4.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "c74c3c0ce972060b9ee6100a61940a99",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 4653721,
"upload_time": "2019-10-10T00:03:12",
"upload_time_iso_8601": "2019-10-10T00:03:12.442884Z",
"url": "https://files.pythonhosted.org/packages/75/e3/1f5626e07fa38b9fd5bf92c018b97e8dd4eec69dd6284b1294fd46873e66/nimfa-1.4.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4281c07af372792380f402c1784cb7e1b9e77e4a9b706eddf6b6f2a8387a0db0",
"md5": "871ac0ea4d2af7f3cd8c5b6b1bfbbcc2",
"sha256": "39cff2b86856d03ca8a3d9c38598034ecf1a768c325fd3a728bb9eadb8c6b919"
},
"downloads": -1,
"filename": "nimfa-1.4.0.tar.gz",
"has_sig": false,
"md5_digest": "871ac0ea4d2af7f3cd8c5b6b1bfbbcc2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5727240,
"upload_time": "2019-10-10T00:03:15",
"upload_time_iso_8601": "2019-10-10T00:03:15.506860Z",
"url": "https://files.pythonhosted.org/packages/42/81/c07af372792380f402c1784cb7e1b9e77e4a9b706eddf6b6f2a8387a0db0/nimfa-1.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2019-10-10 00:03:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "marinkaz",
"github_project": "nimfa",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [],
"tox": true,
"lcname": "nimfa"
}