nitec


Namenitec JSON
Version 0.0.2 PyPI version JSON
download
home_page
SummaryThe official PyTorch implementation of NITEC for eye contact detection.
upload_time2023-11-20 10:00:48
maintainer
docs_urlNone
authorThorsten Hempel, Magnus Jung, Ahmed Abdelrahman
requires_python>3.8
license
keywords eye contact estimation human-robot interact hri deep-learning pytorch engagement wacv
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <div align="center"> **NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction (Accepted at WACV24)** </div>

<p align="center">
  <img src="https://github.com/thohemp/archive/blob/main/nitec.gif" alt="animated" />
</p>

## **Citing**

If you find our work useful, please cite the paper:

```BibTeX
@misc{hempel2023nitec,
      title={NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction}, 
      author={Thorsten Hempel and Magnus Jung and Ahmed A. Abdelrahman and Ayoub Al-Hamadi},
      year={2023},
      eprint={2311.04505},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
## <div align="center"> **Paper**</div>
> [Thorsten Hempel, Magnus Jung, Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction", *accepted at WACV 2024*.](https://arxiv.org/abs/2311.04505)

## <div align="center"> **Abstract**</div>
>Eye contact is a crucial non-verbal interaction modality and plays an important role in our everyday social life. While humans are very sensitive to eye contact, the capabilities of machines to capture a person's gaze are still mediocre. We tackle this challenge and present NITEC, a hand-annotated eye contact dataset for ego-vision interaction. NITEC exceeds existing datasets for ego-vision eye contact in size and variety of demographics, social contexts, and lighting conditions, making it a valuable resource for advancing ego-vision-based eye contact research. Our extensive evaluations on NITEC demonstrate strong cross-dataset performance, emphasizing its effectiveness and adaptability in various scenarios, that allows seamless utilization to the fields of computer vision, human-computer interaction, and social robotics. We make our NITEC dataset publicly available to foster reproducibility and further exploration in the field of ego-vision interaction.


#  <div align="center"> Quick Usage: </div>

```sh
pip install face_detection@git+https://github.com/elliottzheng/face-detection
pip install nitec
```

Example usage:

```py
from nitec import NITEC_Classifier, visualize
import cv2

nitec_pipeline = NITEC_Classifier(
    weights= CWD / 'models' / 'nitec_rs18_e20.pth',
    device=torch.device('cuda') # or 'cpu'
)

cap = cv2.VideoCapture(0)

_, frame = cap.read()    
# Process frame and visualize
results = nitec_pipeline.predict(frame)
frame = visualize(frame, results, confidence=0.5)

```



# <div align="center">  Train / Test </div>

## NITEC Dataset
Prepare the dataset as explained [ here](data/README.MD).

## Snapshots

Download from here: https://drive.google.com/drive/folders/1zc6NZZ6yA4NJ52Nn0bgky1XpZs9Z0hSJ?usp=sharing

## Train
```py
 python train.py \
 --gpu 0 \
 --num_epochs 50 \
 --batch_size 64 \
 --lr 0.0001 \
```


## Test

```py
 python test.py \
 --snapshot models/nitec_rs18_20.pth \
 --gpu 0 \
```


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "nitec",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">3.8",
    "maintainer_email": "",
    "keywords": "eye contact,estimation,human-robot interact,hri,deep-learning,pytorch,engagement,wacv",
    "author": "Thorsten Hempel, Magnus Jung, Ahmed Abdelrahman",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/3c/fb/5b8d662d2ce9f3028a2313af7e8476f58cdd9b4f356efd4a27a546e6d367/nitec-0.0.2.tar.gz",
    "platform": null,
    "description": "# <div align=\"center\"> **NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction (Accepted at WACV24)** </div>\n\n<p align=\"center\">\n  <img src=\"https://github.com/thohemp/archive/blob/main/nitec.gif\" alt=\"animated\" />\n</p>\n\n## **Citing**\n\nIf you find our work useful, please cite the paper:\n\n```BibTeX\n@misc{hempel2023nitec,\n      title={NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction}, \n      author={Thorsten Hempel and Magnus Jung and Ahmed A. Abdelrahman and Ayoub Al-Hamadi},\n      year={2023},\n      eprint={2311.04505},\n      archivePrefix={arXiv},\n      primaryClass={cs.CV}\n}\n```\n## <div align=\"center\"> **Paper**</div>\n> [Thorsten Hempel, Magnus Jung, Ahmed A. Abdelrahman and Ayoub Al-Hamadi, \"NITEC: Versatile Hand-Annotated Eye Contact Dataset for Ego-Vision Interaction\", *accepted at WACV 2024*.](https://arxiv.org/abs/2311.04505)\n\n## <div align=\"center\"> **Abstract**</div>\n>Eye contact is a crucial non-verbal interaction modality and plays an important role in our everyday social life. While humans are very sensitive to eye contact, the capabilities of machines to capture a person's gaze are still mediocre. We tackle this challenge and present NITEC, a hand-annotated eye contact dataset for ego-vision interaction. NITEC exceeds existing datasets for ego-vision eye contact in size and variety of demographics, social contexts, and lighting conditions, making it a valuable resource for advancing ego-vision-based eye contact research. Our extensive evaluations on NITEC demonstrate strong cross-dataset performance, emphasizing its effectiveness and adaptability in various scenarios, that allows seamless utilization to the fields of computer vision, human-computer interaction, and social robotics. We make our NITEC dataset publicly available to foster reproducibility and further exploration in the field of ego-vision interaction.\n\n\n#  <div align=\"center\"> Quick Usage: </div>\n\n```sh\npip install face_detection@git+https://github.com/elliottzheng/face-detection\npip install nitec\n```\n\nExample usage:\n\n```py\nfrom nitec import NITEC_Classifier, visualize\nimport cv2\n\nnitec_pipeline = NITEC_Classifier(\n    weights= CWD / 'models' / 'nitec_rs18_e20.pth',\n    device=torch.device('cuda') # or 'cpu'\n)\n\ncap = cv2.VideoCapture(0)\n\n_, frame = cap.read()    \n# Process frame and visualize\nresults = nitec_pipeline.predict(frame)\nframe = visualize(frame, results, confidence=0.5)\n\n```\n\n\n\n# <div align=\"center\">  Train / Test </div>\n\n## NITEC Dataset\nPrepare the dataset as explained [ here](data/README.MD).\n\n## Snapshots\n\nDownload from here: https://drive.google.com/drive/folders/1zc6NZZ6yA4NJ52Nn0bgky1XpZs9Z0hSJ?usp=sharing\n\n## Train\n```py\n python train.py \\\n --gpu 0 \\\n --num_epochs 50 \\\n --batch_size 64 \\\n --lr 0.0001 \\\n```\n\n\n## Test\n\n```py\n python test.py \\\n --snapshot models/nitec_rs18_20.pth \\\n --gpu 0 \\\n```\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "The official PyTorch implementation of NITEC for eye contact detection.",
    "version": "0.0.2",
    "project_urls": {
        "homepath": "https://github.com/thohemp/nitec",
        "repository": "https://github.com/thohemp/nitec"
    },
    "split_keywords": [
        "eye contact",
        "estimation",
        "human-robot interact",
        "hri",
        "deep-learning",
        "pytorch",
        "engagement",
        "wacv"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "92be7bc7264384fb33eb23b1b2e419431578d87fdf1b25776b00893ba8e32361",
                "md5": "7f220f7c6d0c1e1929cd6b1a4fabc625",
                "sha256": "76b7a44b8bcc8dd7862c4d9e95edddf827cb05f4573b761f6033711b3da934ec"
            },
            "downloads": -1,
            "filename": "nitec-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f220f7c6d0c1e1929cd6b1a4fabc625",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">3.8",
            "size": 7328,
            "upload_time": "2023-11-20T10:00:46",
            "upload_time_iso_8601": "2023-11-20T10:00:46.964702Z",
            "url": "https://files.pythonhosted.org/packages/92/be/7bc7264384fb33eb23b1b2e419431578d87fdf1b25776b00893ba8e32361/nitec-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cfb5b8d662d2ce9f3028a2313af7e8476f58cdd9b4f356efd4a27a546e6d367",
                "md5": "9fb928b7d0aa892beab8f654be660d11",
                "sha256": "e62ed6f1556aaecdd15476dc1948c73f83a502ebfe110d67e7c7922ebd8b254a"
            },
            "downloads": -1,
            "filename": "nitec-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9fb928b7d0aa892beab8f654be660d11",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">3.8",
            "size": 6721,
            "upload_time": "2023-11-20T10:00:48",
            "upload_time_iso_8601": "2023-11-20T10:00:48.737685Z",
            "url": "https://files.pythonhosted.org/packages/3c/fb/5b8d662d2ce9f3028a2313af7e8476f58cdd9b4f356efd4a27a546e6d367/nitec-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-20 10:00:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thohemp",
    "github_project": "nitec",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "nitec"
}
        
Elapsed time: 0.16288s