nndeploy


Namenndeploy JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://github.com/nndeploy/nndeploy
SummaryWorkflow-based Multi-platform AI Deployment Tool
upload_time2025-08-01 03:37:02
maintainerNone
docs_urlNone
authornndeploy team
requires_python>=3.10
licenseApache License 2.0
keywords deep-learning neural-network model-deployment inference ai
VCS
bugtrack_url
requirements cython packaging setuptools gitpython aiofiles PyYAML pytest jsonschema multiprocess numpy opencv-python onnxruntime torch requests fastapi uvicorn websockets python-multipart pydantic
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<h3 align="center">
Workflow-based Multi-platform AI Deployment Tool
</h3>

## Features

nndeploy is a workflow-based multi-platform AI deployment tool with the following capabilities:

### 1. Efficiency Tool for AI Deployment

- **Visual Workflow**: Deploy AI algorithms through drag-and-drop interface

- **Function Calls**: Export workflows as JSON configuration files, supporting Python/C++ API calls

- **Multi-platform Inference**: One workflow, multi-platform deployment. Zero-abstraction cost integration with 13 mainstream inference frameworks, covering cloud, desktop, mobile, and edge platforms

  | Framework | Support Status |
  | :------- | :------ |
  | [PyTorch](https://pytorch.org/) | ✅ |
  | [TensorRT](https://github.com/NVIDIA/TensorRT) | ✅ |
  | [OpenVINO](https://github.com/openvinotoolkit/openvino) | ✅ |
  | [ONNXRuntime](https://github.com/microsoft/onnxruntime) | ✅ |
  | [MNN](https://github.com/alibaba/MNN) | ✅ |
  | [TNN](https://github.com/Tencent/TNN) | ✅ |
  | [ncnn](https://github.com/Tencent/ncnn) | ✅ |
  | [CoreML](https://github.com/apple/coremltools) | ✅ |
  | [AscendCL](https://www.hiascend.com/zh/) | ✅ |
  | [RKNN](https://www.rock-chips.com/a/cn/downloadcenter/BriefDatasheet/index.html) | ✅ |
  | [TVM](https://github.com/apache/tvm) | ✅ |
  | [SNPE](https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk) | ✅ |
  | [Custom Inference Framework](docs/zh_cn/inference/README_INFERENCE.md) | ✅ |

### 2. Performance Tool for AI Deployment

- **Parallel Optimization**: Support for serial, pipeline parallel, and task parallel execution modes

- **Memory Optimization**: Zero-copy, memory pools, memory reuse and other optimization strategies
  
- **High-Performance Optimization**: Built-in nodes optimized with C++/CUDA/SIMD implementations

### 3. Creative Tool for AI Deployment

- **Custom Nodes**: Support Python/C++ custom nodes with seamless integration into visual interface without frontend code

- **Algorithm Composition**: Flexible combination of different algorithms to rapidly build innovative AI applications

- **What You Tune Is What You See**: Frontend visual adjustment of all node parameters in AI algorithm deployment with quick preview of post-tuning effects

## More infomation
You can get everything in nndeploy github main page : [nndeploy](https://github.com/nndeploy/nndeploy)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nndeploy/nndeploy",
    "name": "nndeploy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "deep-learning, neural-network, model-deployment, inference, ai",
    "author": "nndeploy team",
    "author_email": "595961667@qq.com",
    "download_url": null,
    "platform": null,
    "description": "\n<h3 align=\"center\">\nWorkflow-based Multi-platform AI Deployment Tool\n</h3>\n\n## Features\n\nnndeploy is a workflow-based multi-platform AI deployment tool with the following capabilities:\n\n### 1. Efficiency Tool for AI Deployment\n\n- **Visual Workflow**: Deploy AI algorithms through drag-and-drop interface\n\n- **Function Calls**: Export workflows as JSON configuration files, supporting Python/C++ API calls\n\n- **Multi-platform Inference**: One workflow, multi-platform deployment. Zero-abstraction cost integration with 13 mainstream inference frameworks, covering cloud, desktop, mobile, and edge platforms\n\n  | Framework | Support Status |\n  | :------- | :------ |\n  | [PyTorch](https://pytorch.org/) | \u2705 |\n  | [TensorRT](https://github.com/NVIDIA/TensorRT) | \u2705 |\n  | [OpenVINO](https://github.com/openvinotoolkit/openvino) | \u2705 |\n  | [ONNXRuntime](https://github.com/microsoft/onnxruntime) | \u2705 |\n  | [MNN](https://github.com/alibaba/MNN) | \u2705 |\n  | [TNN](https://github.com/Tencent/TNN) | \u2705 |\n  | [ncnn](https://github.com/Tencent/ncnn) | \u2705 |\n  | [CoreML](https://github.com/apple/coremltools) | \u2705 |\n  | [AscendCL](https://www.hiascend.com/zh/) | \u2705 |\n  | [RKNN](https://www.rock-chips.com/a/cn/downloadcenter/BriefDatasheet/index.html) | \u2705 |\n  | [TVM](https://github.com/apache/tvm) | \u2705 |\n  | [SNPE](https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk) | \u2705 |\n  | [Custom Inference Framework](docs/zh_cn/inference/README_INFERENCE.md) | \u2705 |\n\n### 2. Performance Tool for AI Deployment\n\n- **Parallel Optimization**: Support for serial, pipeline parallel, and task parallel execution modes\n\n- **Memory Optimization**: Zero-copy, memory pools, memory reuse and other optimization strategies\n  \n- **High-Performance Optimization**: Built-in nodes optimized with C++/CUDA/SIMD implementations\n\n### 3. Creative Tool for AI Deployment\n\n- **Custom Nodes**: Support Python/C++ custom nodes with seamless integration into visual interface without frontend code\n\n- **Algorithm Composition**: Flexible combination of different algorithms to rapidly build innovative AI applications\n\n- **What You Tune Is What You See**: Frontend visual adjustment of all node parameters in AI algorithm deployment with quick preview of post-tuning effects\n\n## More infomation\nYou can get everything in nndeploy github main page : [nndeploy](https://github.com/nndeploy/nndeploy)\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Workflow-based Multi-platform AI Deployment Tool",
    "version": "0.2.2",
    "project_urls": {
        "Bug Reports": "https://github.com/nndeploy/nndeploy/issues",
        "Homepage": "https://github.com/nndeploy/nndeploy",
        "Source": "https://github.com/nndeploy/nndeploy"
    },
    "split_keywords": [
        "deep-learning",
        " neural-network",
        " model-deployment",
        " inference",
        " ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "27d0a708ef7d713119475d59791e2db2bfb9c143dba47913347d6112331a38d3",
                "md5": "42d34b7b78bf22403003d754c2cd0075",
                "sha256": "ef061fb2d8efbd2e30643dcea25ec33294ee30522a51c1a068d2b93e0138bdb6"
            },
            "downloads": -1,
            "filename": "nndeploy-0.2.2-cp313-cp313-macosx_13_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "42d34b7b78bf22403003d754c2cd0075",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.10",
            "size": 40085045,
            "upload_time": "2025-08-01T03:37:02",
            "upload_time_iso_8601": "2025-08-01T03:37:02.058058Z",
            "url": "https://files.pythonhosted.org/packages/27/d0/a708ef7d713119475d59791e2db2bfb9c143dba47913347d6112331a38d3/nndeploy-0.2.2-cp313-cp313-macosx_13_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-01 03:37:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nndeploy",
    "github_project": "nndeploy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "cython",
            "specs": []
        },
        {
            "name": "packaging",
            "specs": []
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "<=",
                    "68.0.0"
                ]
            ]
        },
        {
            "name": "gitpython",
            "specs": [
                [
                    ">=",
                    "3.1.30"
                ]
            ]
        },
        {
            "name": "aiofiles",
            "specs": [
                [
                    ">=",
                    "24.1.0"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    ">=",
                    "5.3.1"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "jsonschema",
            "specs": []
        },
        {
            "name": "multiprocess",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    ">=",
                    "4.8.0"
                ]
            ]
        },
        {
            "name": "onnxruntime",
            "specs": [
                [
                    ">=",
                    "1.18.0"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.31.0"
                ]
            ]
        },
        {
            "name": "fastapi",
            "specs": [
                [
                    ">=",
                    "0.104.0"
                ]
            ]
        },
        {
            "name": "uvicorn",
            "specs": [
                [
                    ">=",
                    "0.24.0"
                ]
            ]
        },
        {
            "name": "websockets",
            "specs": [
                [
                    ">=",
                    "11.0"
                ]
            ]
        },
        {
            "name": "python-multipart",
            "specs": [
                [
                    ">=",
                    "0.0.6"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        }
    ],
    "lcname": "nndeploy"
}
        
Elapsed time: 0.68915s